Efficient Electrochemical Nitrate Reduction to Ammonia Driven by a Few Nanometer-Confined Built-In Electric Field

纳米 电化学 硝酸盐 还原(数学) 电场 氨生产 材料科学 催化作用 纳米技术 无机化学 环境科学 化学 电极 物理 复合材料 有机化学 物理化学 数学 几何学 量子力学
作者
Maolin Zhang,Zedong Zhang,Shaolong Zhang,Zechao Zhuang,Kepeng Song,Karthik Paramaiah,Moyu Yi,Hao Huang,Dingsheng Wang
出处
期刊:ACS Catalysis 卷期号:: 10437-10446 被引量:2
标识
DOI:10.1021/acscatal.4c02317
摘要

Converting nitrate (NO3–) to ammonia (NH3) through the electrochemical reduction method offers an appealing approach for wastewater treatment and facilitates nitrogen cycling in nature. However, this electrolytic method involves a series of proton-coupled electron transfer processes and comes with severe competing reactions. Consequently, there is a significant demand for catalysts exhibiting good catalytic activities and selectivities. Here, a series of copper–cobalt binary sulfide nanosheets with varying Cu/Co compositions were prepared to investigate the synergy effects between the components copper sulfide and cobalt sulfide on their catalytic performance. As a result, a volcano-like correlation between the Cu/Co ratio and electrocatalytic performance was built. The optimal catalyst CuxS–Co0.5 exhibited a maximum Faradaic efficiency (FE) of ∼95.6% for ammonia at −1.4 V vs Ag/AgCl. The highest ammonia yield rate of 5.36 mg/h·cm2 was achieved at −1.6 V vs Ag/AgCl, which was 6.5- and 3.8-fold relative to those of pure CuxS and CoS2, respectively. By combining spectroscopy characterizations with theoretical calculations, we revealed that catalyst CuxS–Co0.5 with a built-in electric field confined to a few nanometers played a critical role in enhancing electron transfer and creating more active sites. Besides, its improved water dissociation capability was essential for the hydrogenation of reduction intermediates, collectively contributing to the enhanced catalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bang269发布了新的文献求助30
1秒前
煎饼果子不加葱完成签到,获得积分10
1秒前
司宁完成签到,获得积分10
6秒前
小墨驳回了榴莲应助
8秒前
10秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
不配.应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Nancy完成签到,获得积分10
17秒前
fleee完成签到 ,获得积分10
17秒前
yuyu发布了新的文献求助10
17秒前
香蕉觅云应助积极的念波采纳,获得10
19秒前
Nancy发布了新的文献求助10
24秒前
一桶雪碧完成签到,获得积分10
25秒前
尽如完成签到,获得积分10
28秒前
32秒前
bang269完成签到,获得积分10
33秒前
33秒前
科研通AI2S应助FFCC采纳,获得10
36秒前
清爽的丸子完成签到,获得积分10
36秒前
37秒前
37秒前
Tinsulfides完成签到,获得积分10
38秒前
科研小锄头完成签到,获得积分10
39秒前
沼泽发布了新的文献求助10
39秒前
炙热的若枫完成签到 ,获得积分10
42秒前
整齐凌萱完成签到 ,获得积分10
42秒前
43秒前
万泉部诗人完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870