ODCS-YOLO detection algorithm for rail surface defects based on Omni-Dimensional Dynamic Convolution and Context Augmentation Module

卷积(计算机科学) 背景(考古学) 计算机科学 算法 曲面(拓扑) 人工智能 计算机视觉 数学 几何学 地质学 人工神经网络 古生物学
作者
Wenqi Gao,Wenjuan Gu,Yanchao Yin,Tiangui Li,Penglin Dong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106006-106006 被引量:4
标识
DOI:10.1088/1361-6501/ad5dd5
摘要

Abstract To solve the problems of easy miss and false detection on rail surface defects caused by small size, dense target, and high similarity between features and background, this paper proposed an improved detection algorithm in complex background. First, the conventional convolution of YOLOv5 backbone network is replaced with omni-dimensional dynamic convolution (ODConv), which improves the feature extraction capability of the network without increasing the computational cost; second, to improve the model’s performance in detecting tiny objects, a two-layer context augmentation module (CAM) is introduced into the path aggregation network (PAN) structure; finally, the traditional non-maximum suppression (NMS) algorithm is replaced by the Soft-NMS algorithm in the network post-processing to reduce the false-alarm and miss-rate. The experimental results on the Railway Track Fault Detection public dataset show that the OD-YOLO (OD stands for ODConv) and C-PAN (CAM module is introduced into PAN) structures could achieve better performance in the same type of improved algorithms; compared with the baseline algorithm YOLOv5, the ODCS-YOLO (OD stands for ODConv, C stands for CAM and S stands for Soft-NMS) algorithm improves the precision by 12.4%, the recall by 3.6%, the map 50 by 8.6% and the GFLOPs is reduced by 0.6. Compared with seven classical object detection algorithms, the ODCS-YOLO algorithm achieves the highest detection accuracy, which makes it able to meet the real-time detection requirements of rail surface defects in real working conditions. The ODCS-YOLO model provides certain technical support for the defects detection and a new method for the detection of dense small objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuxianglin2006完成签到,获得积分10
2秒前
4秒前
xixihaha完成签到,获得积分10
6秒前
谷粱瑾瑜完成签到,获得积分10
7秒前
谷粱瑾瑜发布了新的文献求助10
11秒前
安安完成签到,获得积分10
11秒前
星辰大海应助yang采纳,获得10
13秒前
汉堡包应助nenoaowu采纳,获得10
14秒前
白熊完成签到,获得积分10
14秒前
充电宝应助bian采纳,获得10
14秒前
澡雪完成签到,获得积分10
15秒前
15秒前
16秒前
want_top_journal完成签到,获得积分10
16秒前
研友_VZG7GZ应助《子非鱼》采纳,获得10
16秒前
Excalibur发布了新的文献求助30
17秒前
17秒前
黄暹之完成签到,获得积分10
17秒前
上官若男应助刻苦大侠采纳,获得10
17秒前
18秒前
19秒前
ggg发布了新的文献求助10
19秒前
言非离完成签到,获得积分10
19秒前
猩猿鸡发布了新的文献求助10
20秒前
泡芙发布了新的文献求助10
21秒前
21秒前
躺平不摆烂完成签到,获得积分10
22秒前
宋映梦发布了新的文献求助10
23秒前
科目三应助柏铸海采纳,获得10
23秒前
芒go发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
研友_85YJY8完成签到,获得积分10
24秒前
24秒前
25秒前
慕辰发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377