卷积(计算机科学)
背景(考古学)
计算机科学
算法
曲面(拓扑)
人工智能
计算机视觉
数学
几何学
地质学
人工神经网络
古生物学
作者
Wenqi Gao,Wenjuan Gu,Yanchao Yin,Tiangui Li,Penglin Dong
标识
DOI:10.1088/1361-6501/ad5dd5
摘要
Abstract To solve the problems of easy miss and false detection on rail surface defects caused by small size, dense target, and high similarity between features and background, this paper proposed an improved detection algorithm in complex background. First, the conventional convolution of YOLOv5 backbone network is replaced with omni-dimensional dynamic convolution (ODConv), which improves the feature extraction capability of the network without increasing the computational cost; second, to improve the model's performance in detecting tiny objects, a two-layer context augmentation module(CAM) is introduced into the path aggregation network(PAN) structure; finally, the traditional non-maximum suppression(NMS) algorithm is replaced by the Soft-NMS algorithm in the network post-processing to reduce the false-alarm and miss-rate. The experimental results on the Railway Track Fault Detection public dataset show that the OD-YOLO (OD stands for ODConv) and C-PAN(CAM module is introduced into PAN) structures could achieve better performance in the same type of improved algorithms; compared with the baseline algorithm YOLOv5, the ODCS-YOLO (OD stands for ODConv, C stands for CAM, and S stands for Soft-NMS) algorithm improves the precision by 12.4%, the recall by 3.6%, the map50 by 8.6% and the GFLOPs is reduced by 0.6. Compared with seven classical object detection algorithms, the ODCS-YOLO algorithm achieves the highest detection accuracy, which makes it able to meet the real-time detection requirements of rail surface defects in real working conditions. The ODCS-YOLO model provides certain technical support for the defects detection and a new method for the detection of dense small objects.
科研通智能强力驱动
Strongly Powered by AbleSci AI