Decisionalizing the problem of reliance on expert and machine evidence

计算机科学
作者
Alex Biedermann,Timothy Lau
出处
期刊:Law, Probability and Risk [Oxford University Press]
卷期号:23 (1)
标识
DOI:10.1093/lpr/mgae007
摘要

Abstract This article analyzes and discusses the problem of reliance on expert and machine evidence, including Artificial Intelligence output, from a decision-analytic point of view. Machine evidence is broadly understood here as the result of computational approaches, with or without a human-in-the-loop, applied to the analysis and the assessment of the probative value of forensic traces such as fingermarks. We treat reliance as a personal decision for the factfinder; specifically, we define it as a function of the congruence between expert output in a given case and ground truth, combined with the decision-maker’s preferences among accurate and inaccurate decision outcomes. The originality of this analysis lies in its divergence from mainstream approaches that rely on standard, aggregate performance metrics for expert and AI systems, such as aggregate accuracy rates, as the defining criteria for reliance. Using fingermark analysis as an example, we show that our decision-theoretic criterion for the reliance on expert and machine output has a dual advantage. On the one hand, it focuses on what is really at stake in reliance on such output and, on the other hand, it has the ability to assist the decision-maker with the fundamentally personal problem of deciding to rely. In essence, our account represents a model- and coherence-based analysis of the practical questions and justificatory burden encountered by anyone required to deal with computational output in forensic science contexts. Our account provides a normative decision structure that is a reference point against which intuitive viewpoints regarding reliance can be compared, which complements standard and essentially data-centered assessment criteria. We argue that these considerations, although primarily a theoretical contribution, are fundamental to the discourses on how to use algorithmic output in areas such as fingerprint analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTTHANKS发布了新的文献求助10
刚刚
田様应助夕荀采纳,获得10
1秒前
1秒前
2秒前
2秒前
4秒前
6秒前
大个应助清爽灰狼采纳,获得10
6秒前
6秒前
天才小熊猫完成签到,获得积分10
7秒前
希望天下0贩的0应助YLing采纳,获得10
7秒前
huhu发布了新的文献求助10
7秒前
hanatae完成签到,获得积分10
8秒前
firewater发布了新的文献求助10
8秒前
酷波er应助wjx采纳,获得10
8秒前
9秒前
11秒前
上官若男应助兜里没糖采纳,获得10
11秒前
11秒前
我与论文不共戴天完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
值班室禁止学习完成签到,获得积分10
13秒前
奕初阳发布了新的文献求助10
14秒前
情怀应助一步一步采纳,获得10
14秒前
14秒前
夕荀发布了新的文献求助10
14秒前
汉堡包应助英勇的汉堡采纳,获得10
15秒前
15秒前
16秒前
顾矜应助冰叶点点采纳,获得10
16秒前
17秒前
张才豪发布了新的文献求助10
17秒前
充电宝应助欣慰荔枝采纳,获得10
18秒前
爱笑茉莉发布了新的文献求助10
18秒前
ding应助丰富广缘采纳,获得10
19秒前
愉快树叶发布了新的文献求助10
19秒前
刀杨同学发布了新的文献求助30
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721