Decisionalizing the problem of reliance on expert and machine evidence

计算机科学
作者
Alex Biedermann,Timothy Lau
出处
期刊:Law, Probability and Risk [Oxford University Press]
卷期号:23 (1)
标识
DOI:10.1093/lpr/mgae007
摘要

Abstract This article analyzes and discusses the problem of reliance on expert and machine evidence, including Artificial Intelligence output, from a decision-analytic point of view. Machine evidence is broadly understood here as the result of computational approaches, with or without a human-in-the-loop, applied to the analysis and the assessment of the probative value of forensic traces such as fingermarks. We treat reliance as a personal decision for the factfinder; specifically, we define it as a function of the congruence between expert output in a given case and ground truth, combined with the decision-maker’s preferences among accurate and inaccurate decision outcomes. The originality of this analysis lies in its divergence from mainstream approaches that rely on standard, aggregate performance metrics for expert and AI systems, such as aggregate accuracy rates, as the defining criteria for reliance. Using fingermark analysis as an example, we show that our decision-theoretic criterion for the reliance on expert and machine output has a dual advantage. On the one hand, it focuses on what is really at stake in reliance on such output and, on the other hand, it has the ability to assist the decision-maker with the fundamentally personal problem of deciding to rely. In essence, our account represents a model- and coherence-based analysis of the practical questions and justificatory burden encountered by anyone required to deal with computational output in forensic science contexts. Our account provides a normative decision structure that is a reference point against which intuitive viewpoints regarding reliance can be compared, which complements standard and essentially data-centered assessment criteria. We argue that these considerations, although primarily a theoretical contribution, are fundamental to the discourses on how to use algorithmic output in areas such as fingerprint analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
2秒前
木香完成签到,获得积分10
2秒前
5秒前
Ricey应助123采纳,获得10
5秒前
在水一方应助Self-made采纳,获得10
5秒前
8秒前
俊逸天德完成签到,获得积分10
10秒前
独特元蝶发布了新的文献求助10
10秒前
11秒前
科研通AI5应助77采纳,获得10
11秒前
lemon发布了新的文献求助10
13秒前
15秒前
suiwuya完成签到,获得积分10
15秒前
优秀的傲南完成签到,获得积分10
16秒前
16秒前
yy发布了新的文献求助30
17秒前
77完成签到,获得积分10
17秒前
Jasper应助琪凯定理采纳,获得10
18秒前
失眠无声发布了新的文献求助10
19秒前
死去的温柔5完成签到,获得积分10
19秒前
传奇3应助wjx采纳,获得10
20秒前
在水一方应助wjx采纳,获得10
20秒前
20秒前
酷波er应助wjx采纳,获得10
20秒前
在水一方应助wjx采纳,获得10
20秒前
华仔应助wjx采纳,获得30
20秒前
小二郎应助wjx采纳,获得10
20秒前
星辰大海应助wjx采纳,获得10
20秒前
赘婿应助wjx采纳,获得10
20秒前
Jasper应助wjx采纳,获得30
20秒前
充电宝应助wjx采纳,获得10
20秒前
tender完成签到,获得积分10
22秒前
22秒前
tan发布了新的文献求助10
23秒前
usora发布了新的文献求助10
24秒前
至幸发布了新的文献求助10
25秒前
supertkeb发布了新的文献求助30
26秒前
zhou应助wjx采纳,获得10
28秒前
科目三应助wjx采纳,获得10
28秒前
小桑桑发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975426
求助须知:如何正确求助?哪些是违规求助? 3519848
关于积分的说明 11199831
捐赠科研通 3256122
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305