Decisionalizing the problem of reliance on expert and machine evidence

计算机科学
作者
Alex Biedermann,Timothy Lau
出处
期刊:Law, Probability and Risk [Oxford University Press]
卷期号:23 (1)
标识
DOI:10.1093/lpr/mgae007
摘要

Abstract This article analyzes and discusses the problem of reliance on expert and machine evidence, including Artificial Intelligence output, from a decision-analytic point of view. Machine evidence is broadly understood here as the result of computational approaches, with or without a human-in-the-loop, applied to the analysis and the assessment of the probative value of forensic traces such as fingermarks. We treat reliance as a personal decision for the factfinder; specifically, we define it as a function of the congruence between expert output in a given case and ground truth, combined with the decision-maker’s preferences among accurate and inaccurate decision outcomes. The originality of this analysis lies in its divergence from mainstream approaches that rely on standard, aggregate performance metrics for expert and AI systems, such as aggregate accuracy rates, as the defining criteria for reliance. Using fingermark analysis as an example, we show that our decision-theoretic criterion for the reliance on expert and machine output has a dual advantage. On the one hand, it focuses on what is really at stake in reliance on such output and, on the other hand, it has the ability to assist the decision-maker with the fundamentally personal problem of deciding to rely. In essence, our account represents a model- and coherence-based analysis of the practical questions and justificatory burden encountered by anyone required to deal with computational output in forensic science contexts. Our account provides a normative decision structure that is a reference point against which intuitive viewpoints regarding reliance can be compared, which complements standard and essentially data-centered assessment criteria. We argue that these considerations, although primarily a theoretical contribution, are fundamental to the discourses on how to use algorithmic output in areas such as fingerprint analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊发布了新的文献求助10
刚刚
1秒前
Labubuz完成签到,获得积分10
1秒前
只鱼完成签到 ,获得积分10
2秒前
ding应助swh采纳,获得30
4秒前
lfchen发布了新的文献求助10
5秒前
5秒前
6秒前
77完成签到,获得积分20
7秒前
易吴鱼发布了新的文献求助10
7秒前
7秒前
温暖的沛凝完成签到 ,获得积分10
10秒前
无聊的人完成签到 ,获得积分10
11秒前
西瓜刀发布了新的文献求助10
12秒前
情怀应助大气早晨采纳,获得10
12秒前
大观天下发布了新的文献求助10
13秒前
13秒前
深情安青应助WheredUWannaGo采纳,获得30
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
桥豆麻袋完成签到,获得积分10
16秒前
16秒前
16秒前
战神小新完成签到,获得积分10
18秒前
18秒前
洋溢发布了新的文献求助10
18秒前
20秒前
研友_LJGXgn完成签到,获得积分10
20秒前
欣喜谷槐完成签到,获得积分10
23秒前
hmgs41发布了新的文献求助10
23秒前
27秒前
28秒前
可爱满天完成签到,获得积分10
28秒前
followZ完成签到,获得积分10
29秒前
诚心的凛发布了新的文献求助10
30秒前
vixerunt完成签到,获得积分10
30秒前
happynewyear完成签到,获得积分20
30秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
852应助科研通管家采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4039054
求助须知:如何正确求助?哪些是违规求助? 3576775
关于积分的说明 11376414
捐赠科研通 3306507
什么是DOI,文献DOI怎么找? 1819465
邀请新用户注册赠送积分活动 892806
科研通“疑难数据库(出版商)”最低求助积分说明 815115