Microclimate diversity drives grape quality difference at high-altitude: Observation using PCA analysis and structural equation modeling (SEM)

可滴定酸 葡萄酒 高度(三角形) 主成分分析 小气候 环境科学 食品科学 偏最小二乘回归 原花青素 园艺 化学 数学 植物 多酚 生物 生态学 统计 抗氧化剂 几何学 生物化学
作者
Kenan Zhang,Jianhong Cao,Haining Yin,Jiakui Wang,Xuefei Wang,Yafan Yang,Zhumei Xi
出处
期刊:Food Research International [Elsevier]
卷期号:191: 114644-114644 被引量:10
标识
DOI:10.1016/j.foodres.2024.114644
摘要

With the increasing threat of global warming, the cultivation of wine grapes in high-altitude with cool-temperature climates has become a viable option. However, the precise mechanism of environmental factors regulating grape quality remains unclear. Therefore, principal component analysis (PCA) was utilized to evaluate the quality of wine grape (Cabernet Sauvignon) in six high-altitude wine regions (1987, 2076, 2181, 2300, 2430, 2540 m). Structural equation modeling (SEM) was applied for the first time to identify the environmental contribution to grape quality. The wine grape quality existed spatial variation in basic physical attributes (BP), basic chemical compositions (BC), phenolic compounds (PC) and individual phenols. The PCA models (variance > 85 %) well separate wine grapes from the six altitudes into three groups according to scores. The score of grapes at 2300 m was significantly high (3.83), and the grapes of 2540 m showed a significantly low score (1.46). Subsequently, the malic acid, total tannin, total phenol, titratable acid, total anthocyanin, and skin thickness were the main differing indexes. SEM model characterized the relational network of differing indexes and microclimatic factors, which showed that temperature and extreme air temperature had a greater direct effect on differing indexes than light, with great contributions from soil temperature (0.98**), day-night temperature difference (0.825*), and day air temperature (0.789**). Our findings provided a theoretical basis for grape cultivation management in high-altitude regions and demonstrated that the SEM model is a useful tool for exploring the relationship between climate and fruit quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫茹发布了新的文献求助10
刚刚
夏xia发布了新的文献求助10
1秒前
王一一发布了新的文献求助10
2秒前
研友_LaV1xn发布了新的文献求助10
3秒前
靓仔发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
小哦嘿应助xxcc12356采纳,获得10
5秒前
科研通AI2S应助xxcc12356采纳,获得10
5秒前
科研通AI6应助xxcc12356采纳,获得10
5秒前
ice发布了新的文献求助10
7秒前
科研通AI2S应助糯米糍采纳,获得10
8秒前
英俊的铭应助糯米糍采纳,获得10
8秒前
烟花应助糯米糍采纳,获得10
8秒前
8秒前
易安应助科研通管家采纳,获得10
8秒前
优美紫槐应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
9秒前
优美紫槐应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
优美紫槐应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680471
求助须知:如何正确求助?哪些是违规求助? 4999474
关于积分的说明 15173146
捐赠科研通 4840392
什么是DOI,文献DOI怎么找? 2594044
邀请新用户注册赠送积分活动 1547083
关于科研通互助平台的介绍 1505062