Microclimate diversity drives grape quality difference at high-altitude: Observation using PCA analysis and structural equation modeling (SEM)

可滴定酸 葡萄酒 高度(三角形) 主成分分析 小气候 环境科学 食品科学 偏最小二乘回归 原花青素 园艺 化学 数学 植物 多酚 生物 生态学 统计 抗氧化剂 生物化学 几何学
作者
Kenan Zhang,Jianhong Cao,Haining Yin,Jiakui Wang,Xuefei Wang,Yafan Yang,Zhumei Xi
出处
期刊:Food Research International [Elsevier]
卷期号:191: 114644-114644 被引量:10
标识
DOI:10.1016/j.foodres.2024.114644
摘要

With the increasing threat of global warming, the cultivation of wine grapes in high-altitude with cool-temperature climates has become a viable option. However, the precise mechanism of environmental factors regulating grape quality remains unclear. Therefore, principal component analysis (PCA) was utilized to evaluate the quality of wine grape (Cabernet Sauvignon) in six high-altitude wine regions (1987, 2076, 2181, 2300, 2430, 2540 m). Structural equation modeling (SEM) was applied for the first time to identify the environmental contribution to grape quality. The wine grape quality existed spatial variation in basic physical attributes (BP), basic chemical compositions (BC), phenolic compounds (PC) and individual phenols. The PCA models (variance > 85 %) well separate wine grapes from the six altitudes into three groups according to scores. The score of grapes at 2300 m was significantly high (3.83), and the grapes of 2540 m showed a significantly low score (1.46). Subsequently, the malic acid, total tannin, total phenol, titratable acid, total anthocyanin, and skin thickness were the main differing indexes. SEM model characterized the relational network of differing indexes and microclimatic factors, which showed that temperature and extreme air temperature had a greater direct effect on differing indexes than light, with great contributions from soil temperature (0.98**), day-night temperature difference (0.825*), and day air temperature (0.789**). Our findings provided a theoretical basis for grape cultivation management in high-altitude regions and demonstrated that the SEM model is a useful tool for exploring the relationship between climate and fruit quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
看一篇文献完成签到 ,获得积分10
2秒前
2秒前
秋辞发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
囧囧应助科研通管家采纳,获得50
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
Mida应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
囧囧应助科研通管家采纳,获得100
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
Mida应助科研通管家采纳,获得10
5秒前
5秒前
ahtj应助科研通管家采纳,获得80
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Mida应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704