双金属片
锰
金属有机骨架
钙
化学
亚硫酸盐
无机化学
金属
吸附
有机化学
作者
Mianheng Su,L. C. Yang
标识
DOI:10.1016/j.jece.2024.113188
摘要
Calcium sulfite (CaSO3) oxidation is the key step in the resource utilization of flue gas desulfurization (FGD) ash waste. However, under natural conditions the oxidation rate of CaSO3 is very low, limiting its conversion into calcium sulfate, an acceptable product for construction material. This study was devoted to the investigation of the synthesis and performance of a bimetallic MOFs with potential catalytic activity, namely, Fe/Mn(BDC)(DMF,F) catalysts. A combination of techniques including SEM, EDS, XRD, FT-IR, etc. were used to characterize the catalysts. The excellent catalytic performance examined in a gas-liquid-solid three-phase oxidation system are due to the special flexible respiratory architecture and homogeneous distribution of active sites, which allows the reactants to fully contact with the catalyst. Mn incorporated in the backbone of the metal-organic framework significantly enriches the catalytic active species that participate in a radical chain reaction with activated SO32- as ·SO3-, which in turn generates the key radical ·SO5- that reacts with SO32- to form SO42-. In the presence of Fe/Mn(BDC)(DMF, F)-13, the oxidation ratio of CaSO3 could reach 90.71%, which is more than 30-fold compared to non-catalytic oxidation and almost 5 times the effects of the single metal Fe(BDC)(DMF, F) catalyst. In addition, the study of kinetics shows that the oxidation rate of Fe/Mn(BDC)(DMF,F)-13 can reach 0.042 mmol·L-1·s-1 with an apparent activation energy of 10.86 kJ/mol. The oxidation rate is mainly affected by reaction temperature, pH value, catalyst concentration, and air flow rate. This study provides a potentially sustainable way for utilization of CaSO3-containing desulfurization ash.
科研通智能强力驱动
Strongly Powered by AbleSci AI