Neural networks-based line element method for large deflection frame analysis

偏转(物理) 结构工程 帧(网络) 框架分析 计算机科学 有限元法 人工神经网络 工程类 人工智能 物理 经典力学 电信 社会科学 社会学 内容分析
作者
Weihang Ouyang,Liang Chen,An-Rui Liang,Si‐Wei Liu
出处
期刊:Computers & Structures [Elsevier BV]
卷期号:300: 107425-107425 被引量:1
标识
DOI:10.1016/j.compstruc.2024.107425
摘要

The line finite element method (LFEM) is the predominant simulation method in structural design due to its robustness in large-scale structural analysis. However, it sometimes suffers from the tedious computational process due to its fine-mesh requirement to ensure accuracy. The machine learning (ML) technique provides an efficient mesh-free alternative but necessitating tremendous training datasets for modeling large-scale structural systems. In this paper, a novel numerical framework, named the neural networks-based line element (NNLE) method, synergizing the unique advantages of the finite element method and ML technique, is proposed and presented within the context of large deflection frame analysis. The neural networks (NN) model is only trained for modeling single components, thereby significantly diminishing the model scale and the required training dataset. Then, the NN model is used to formulate a new NNLE and implemented within the existing LFEM framework to simulate the entire structural system. Extensive examples are performed to demonstrate the accuracy, efficiency, compatibility, and flexibility of the proposed NNLE method compared with the conventional LFEM and ML techniques. It is convinced that the proposed NNLE method will offer new insights into the combination of the traditional finite element method and the emerging ML approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的哈密瓜完成签到,获得积分10
刚刚
红日未央完成签到,获得积分10
1秒前
2秒前
2秒前
gss完成签到,获得积分10
3秒前
科研通AI5应助Annie采纳,获得10
5秒前
星辰大海应助sy采纳,获得10
6秒前
7秒前
7秒前
Jasper应助Zhongxiang Peng采纳,获得10
7秒前
8秒前
研友_VZG7GZ应助博修采纳,获得10
9秒前
LuckyJ_Jia应助科研通管家采纳,获得50
9秒前
LuckyJ_Jia应助科研通管家采纳,获得50
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
经络应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
淡然冬灵应助科研通管家采纳,获得20
10秒前
浮游应助科研通管家采纳,获得30
10秒前
文艺紫菜应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得30
11秒前
wanci应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783