Deep learning wind power prediction model based on attention mechanism based convolutional neural network and gated recurrent unit neural network

卷积神经网络 机制(生物学) 人工神经网络 循环神经网络 计算机科学 深度学习 人工智能 机器学习 物理 量子力学
作者
Zaihong Hou,Yulong Bai,Lin Ding,Xiao-Xin Yue,Yu-ting Huang,Wei Song,Qi Bi
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
标识
DOI:10.1142/s0218126624502840
摘要

Accurate prediction of wind power is crucial for the efficient operation and risk management of wind farms. This paper introduces a deep learning model for wind power prediction that integrates an Attention mechanism with a convolutional neural network (CNN) and a gated recurrent unit (GRU) neural network. Addressing the randomness, intermittency, volatility and uncertainty of wind speed, we first apply swarm decomposition (SWD) to preprocess the original wind power data into subsequences. Subsequently, the CNN extracts spatial features, and the GRU identifies temporal correlations. The Attention mechanism enhances feature significance, further optimizing prediction accuracy. Complex error sequences generated by the CNN–GRU–Attention (CGA) model are corrected using the autoregressive integrated moving average (ARIMA). We evaluated the model’s performance using three wind power datasets against 16 other models, employing six evaluation indices (MSE, RMSE, MAPE, Theil’s [Formula: see text], TIC and SPL) and the Diebold–Mariano (DM) test and model confidence set (MCS) for model testing. Our results demonstrate the proposed model’s superior accuracy and efficiency in predicting wind power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gakay完成签到,获得积分10
1秒前
一一2完成签到,获得积分10
1秒前
满座完成签到,获得积分10
2秒前
2秒前
fox2shj完成签到,获得积分10
2秒前
华仔应助仗炮由纪采纳,获得10
2秒前
3秒前
兴奋白枫发布了新的文献求助10
4秒前
cincrady完成签到,获得积分10
4秒前
隐形曼青应助dll采纳,获得10
4秒前
苹果清涟完成签到,获得积分10
5秒前
外向的跳跳糖完成签到,获得积分10
6秒前
deway发布了新的文献求助10
6秒前
田...完成签到,获得积分10
6秒前
flipped完成签到,获得积分10
7秒前
小白完成签到 ,获得积分10
7秒前
杨杨杨完成签到,获得积分10
7秒前
番茄黄瓜芝士片完成签到 ,获得积分10
8秒前
朝花夕拾完成签到,获得积分10
8秒前
百事可乐发布了新的文献求助10
8秒前
丘比特应助郭志倩采纳,获得10
9秒前
中恐发布了新的文献求助10
9秒前
平常的青荷完成签到,获得积分10
10秒前
Rainbow完成签到,获得积分10
11秒前
yin完成签到,获得积分10
11秒前
小伍同学完成签到,获得积分10
11秒前
芳芳子呀完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
dll完成签到,获得积分10
14秒前
一条迷人的咸鱼干完成签到,获得积分10
14秒前
兴奋白枫完成签到,获得积分10
14秒前
投必快业必毕完成签到,获得积分10
15秒前
独自受罪完成签到 ,获得积分10
15秒前
咕咕完成签到,获得积分10
15秒前
Nariy完成签到,获得积分10
15秒前
dll发布了新的文献求助10
17秒前
欣喜以筠完成签到,获得积分10
18秒前
胡萝卜完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910868
求助须知:如何正确求助?哪些是违规求助? 4186466
关于积分的说明 12999953
捐赠科研通 3954069
什么是DOI,文献DOI怎么找? 2168267
邀请新用户注册赠送积分活动 1186627
关于科研通互助平台的介绍 1093947