重编程
表观遗传学
急性肾损伤
转录组
转录因子
肾脏疾病
生物
调节器
细胞
计算生物学
癌症研究
生物信息学
基因
医学
遗传学
基因表达
内科学
内分泌学
作者
Yoshiharu Muto,Eryn E. Dixon,Yasuhiro Yoshimura,Nicolas Ledru,Yuhei Kirita,Hao Wu,Benjamin D. Humphreys
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2024-08-07
卷期号:10 (32)
被引量:1
标识
DOI:10.1126/sciadv.ado2849
摘要
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
科研通智能强力驱动
Strongly Powered by AbleSci AI