Prediction of lesion-based treatment response after two cycles of Lu-177 PSMA treatment in metastatic castration-resistant prostate cancer using machine learning

医学 前列腺癌 病变 逻辑回归 前列腺 核医学 靶病变 泌尿科 内科学 肿瘤科 癌症 病理 经皮冠状动脉介入治疗 心肌梗塞
作者
Ogün Bülbül,Demet Nak,Sibel Göksel
出处
期刊:Urologia Internationalis [S. Karger AG]
卷期号:: 1-12
标识
DOI:10.1159/000541628
摘要

Introduction Lutetium-177 (Lu-177) prostate specific membrane antigen (PSMA) therapy is a radionuclide treatment that prolongs overall survival in metastatic castration-resistant prostate cancer (MCRPC). We aimed to predict lesion-based treatment response after Lu-177 PSMA treatment using machine learning with texture analysis data obtained from pretreatment Gallium-68 (Ga-68) PSMA PET/CT. Methods Eighty-three progressed, and 91 nonprogressed malignant foci on pretreatment Ga-68 PSMA PET/CT of 9 patients were used for analysis. Malignant foci with at least a 30% increase in Ga-68 PSMA uptake after two cycles of treatment were considered progressed lesions. All other changes in Ga-68 PSMA uptake of the lesions were considered nonprogressed lesions. The classifiers tried to predict progressed lesions. Results Logistic regression, Naive Bayes, and k-nearest neighbors' AUC values in detecting progressed lesions in the training group were 0.956, 0.942, and 0.950, respectively, and their accuracy was 87%, 85%, and 89%, respectively. The AUC values of the classifiers in the testing group were 0.937, 0.954, and 0.867, respectively, and their accuracy was 85%, 88%, and 79%, respectively. Conclusion Using machine learning with texture analysis data obtained from pretreatment Ga-68 PSMA PET/CT in MCRPC predicted lesion-based treatment response after two cycles of Lu-177 PSMA treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangkang完成签到,获得积分10
刚刚
丘比特应助东风第一枝采纳,获得10
刚刚
刚刚
丰知然应助normankasimodo采纳,获得10
1秒前
黑森林发布了新的文献求助30
1秒前
hu970发布了新的文献求助10
1秒前
1秒前
俭朴夜雪发布了新的文献求助30
1秒前
林上草应助lzj001983采纳,获得10
1秒前
小白完成签到,获得积分20
1秒前
药疯了完成签到,获得积分20
2秒前
桐桐应助123采纳,获得10
2秒前
风中寄云发布了新的文献求助10
2秒前
buuyoo发布了新的文献求助10
2秒前
zjudxn发布了新的文献求助10
2秒前
春夏爱科研完成签到,获得积分10
3秒前
飞翔的西红柿完成签到,获得积分10
3秒前
xzy完成签到,获得积分10
3秒前
L.发布了新的文献求助20
4秒前
Verdigris完成签到,获得积分10
5秒前
cindy完成签到,获得积分10
5秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
5秒前
金色热浪完成签到 ,获得积分10
5秒前
快去读文献完成签到,获得积分20
5秒前
斯文静曼完成签到,获得积分10
5秒前
5秒前
5秒前
拼搏思卉关注了科研通微信公众号
6秒前
6秒前
liudiqiu应助酷酷的起眸采纳,获得10
6秒前
研友_8yN60L发布了新的文献求助10
6秒前
所所应助VDC采纳,获得10
6秒前
xxq发布了新的文献求助30
6秒前
xzy发布了新的文献求助20
7秒前
Linanana完成签到,获得积分10
7秒前
7秒前
贾舒涵发布了新的文献求助10
7秒前
Sunrise完成签到,获得积分10
8秒前
HH完成签到,获得积分10
9秒前
科研通AI2S应助飞羽采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759