Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib

托法替尼 医学 类风湿性关节炎 逻辑回归 内科学 接收机工作特性 梯度升压 机器学习 痹症科 随机森林 计算机科学
作者
Merete Lund Hetland,Anja Strangfeld,Gianluca Bonfanti,Dimitrios Soudis,J. Jasper Deuring,Roger Edwards
出处
期刊:Arthritis Research & Therapy [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s13075-024-03376-9
摘要

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program. This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model. A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only. Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction. ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
daisies应助yana采纳,获得20
刚刚
何佳易关注了科研通微信公众号
刚刚
cdgbdfbsfdvsd完成签到,获得积分10
1秒前
zero完成签到,获得积分10
2秒前
类囊体薄膜完成签到,获得积分10
2秒前
3秒前
sparks完成签到,获得积分10
3秒前
3秒前
Yuanyuan发布了新的文献求助30
4秒前
brier0218完成签到,获得积分10
4秒前
4秒前
云云完成签到,获得积分10
4秒前
心灵美复天完成签到,获得积分10
4秒前
chenyq1177完成签到 ,获得积分10
5秒前
哦豁拐咯完成签到,获得积分10
6秒前
毕业大吉完成签到,获得积分20
6秒前
糖丸完成签到,获得积分10
6秒前
颖仔完成签到,获得积分10
7秒前
doin完成签到,获得积分10
7秒前
发一篇sci完成签到 ,获得积分10
7秒前
老实皮皮虾完成签到,获得积分10
8秒前
慕青应助石头采纳,获得10
9秒前
Kins完成签到,获得积分10
9秒前
清浅发布了新的文献求助20
9秒前
王五发布了新的文献求助10
9秒前
康康米其林完成签到,获得积分10
10秒前
10秒前
王小海111完成签到 ,获得积分10
10秒前
11秒前
A阿澍完成签到,获得积分10
11秒前
淡淡凌翠完成签到,获得积分10
11秒前
科研通AI2S应助FLZLC采纳,获得10
12秒前
anthea完成签到 ,获得积分10
12秒前
元气糖完成签到 ,获得积分10
12秒前
12秒前
13秒前
Sky完成签到,获得积分10
13秒前
13秒前
LL666完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118