Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib

托法替尼 医学 类风湿性关节炎 逻辑回归 内科学 接收机工作特性 梯度升压 机器学习 痹症科 随机森林 计算机科学
作者
Merete Lund Hetland,Anja Strangfeld,Gianluca Bonfanti,Dimitrios Soudis,J. Jasper Deuring,Roger Edwards
出处
期刊:Arthritis Research & Therapy [Springer Nature]
卷期号:26 (1)
标识
DOI:10.1186/s13075-024-03376-9
摘要

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program. This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model. A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only. Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction. ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨蛋小姐发布了新的文献求助10
1秒前
共享精神应助霸气的新梅采纳,获得10
3秒前
ab古完成签到,获得积分10
3秒前
不安的问安完成签到,获得积分10
4秒前
在水一方应助wst采纳,获得10
4秒前
Jasper应助Viva采纳,获得30
4秒前
心如止水发布了新的文献求助10
4秒前
bilan发布了新的文献求助10
6秒前
6秒前
无机盐发布了新的文献求助10
8秒前
sihaibo完成签到,获得积分10
8秒前
hanqing发布了新的文献求助10
9秒前
9秒前
深情安青应助笨蛋小姐采纳,获得10
10秒前
10秒前
迅速冰双发布了新的文献求助10
12秒前
12秒前
12秒前
太清发布了新的文献求助10
12秒前
激昂的千萍完成签到 ,获得积分10
13秒前
15秒前
上好佳发布了新的文献求助10
15秒前
欣荣发布了新的文献求助10
16秒前
Micha发布了新的文献求助10
16秒前
16秒前
奋斗的三德完成签到,获得积分20
17秒前
Xixia发布了新的文献求助10
17秒前
gcy完成签到,获得积分10
18秒前
夏哈哈发布了新的文献求助10
18秒前
wst发布了新的文献求助10
20秒前
Hello应助纳纳椰采纳,获得10
20秒前
21秒前
Errol完成签到,获得积分10
22秒前
gcy发布了新的文献求助10
22秒前
Utopia发布了新的文献求助10
22秒前
bilan完成签到,获得积分10
23秒前
Yuan完成签到,获得积分10
24秒前
善学以致用应助Viva采纳,获得10
24秒前
玔堷完成签到,获得积分0
26秒前
aldehyde完成签到,获得积分0
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325661
求助须知:如何正确求助?哪些是违规求助? 2956332
关于积分的说明 8580190
捐赠科研通 2634297
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654791