Topology Optimization of Fuel Cells: an Innovative Approach for Sustainable Aviation

拓扑优化 航空 拓扑(电路) 燃料电池 计算机科学 工程类 汽车工程 航空航天工程 电气工程 有限元法 化学工程 结构工程
作者
Nicola Casari,Antonio Di Caterino,Marco Pietropaoli
标识
DOI:10.1115/gt2024-128915
摘要

Abstract The imperative to meet COP 21 targets underscores the pressing need to reduce our dependence on fossil fuel-based technologies. Among the array of viable alternatives, hydrogen stands out as a compelling candidate, with applications spanning from ground vehicles to energy production and even the most challenging sectors to decarbonize, like aviation. Hydrogen’s versatility and scalability render it a subject of growing interest across various industries, but the rapid market penetration of hydrogen-related solutions is hampered by some shortcomings in the performances of the applications. For instance, the current maximum efficiency of fuel cells hovers around 60%, leaving significant room for improvement. This paper shows how topology optimization can help designers and manufacturers of fuel cells understand and improve some of the crucial features of these devices. For example, the application of topology optimization can increase the uniformity in reactant delivery, improve the cooling system and reduce the pressure losses in the manifolds. These aspects are crucial for improving the energy density of these products, increasing also their efficiency and reliability. The resulting geometries show how, with the support of topology optimization, fuel cells will be soon ready for real-world aviation applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助怡然的莫茗采纳,获得10
1秒前
2秒前
科研通AI5应助清秀的以云采纳,获得30
2秒前
李健的粉丝团团长应助xx采纳,获得10
4秒前
大豪子发布了新的文献求助30
4秒前
李繁蕊发布了新的文献求助10
4秒前
8秒前
8秒前
8秒前
8秒前
橘柚完成签到 ,获得积分10
9秒前
zmmmm发布了新的文献求助10
9秒前
领导范儿应助温言采纳,获得10
9秒前
思源应助OvO采纳,获得10
11秒前
迷糊发布了新的文献求助30
12秒前
LY发布了新的文献求助10
13秒前
zzz完成签到,获得积分10
13秒前
KimJongUn完成签到,获得积分10
13秒前
15秒前
15秒前
zy完成签到,获得积分10
16秒前
开心果子发布了新的文献求助10
16秒前
云痴子完成签到,获得积分10
17秒前
SciGPT应助粥粥采纳,获得10
17秒前
17秒前
17秒前
18秒前
苏源完成签到,获得积分10
18秒前
wu关闭了wu文献求助
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
Shawn完成签到,获得积分10
21秒前
yltstt完成签到,获得积分10
22秒前
李小新发布了新的文献求助10
22秒前
成梦发布了新的文献求助10
23秒前
乐乐应助xuex1采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808