Time history seismic response prediction of multiple homogeneous building structures using only one deep learning‐based Structure Temporal Fusion Network

同种类的 冗余(工程) 非线性系统 深度学习 计算机科学 人工神经网络 人工智能 结构工程 机器学习 工程类 数学 物理 量子力学 组合数学 操作系统
作者
Zuohua Li,Qitao Yang,Quanxue Deng,Yunxuan Gong,Deyuan Tian,Pengfei Su,Jun Teng
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4213
摘要

Abstract Structural response prediction under earthquakes is crucial for evaluating the structural performance and subsequent functional restoration. Deep learning provides the potential to rapidly obtain the responses by skipping the time‐consuming nonlinear finite element analysis. However, a single deep learning network may only predict the time history responses of one specific structure, resulting in redundancy and resource waste when building multiple networks for modeling different structures. Thus, this study proposes a Structure Temporal Fusion Network (STFN) that can predict responses of various homogeneous structures using a single network. The key concept is that the seismic waves and the structural characteristics, such as story numbers, are fused together to predict diverse time history responses. Two numeric experiments are conducted, including predicting responses of ideal single‐degree‐of‐freedom (SDOF) structures and regular multistory reinforced concrete frames. Furthermore, a series of ablation analyses are carried out to validate the network architecture. The results indicate that STFN can predict nonlinear time history responses of different structures with mean square errors in the magnitude of and for two experiments, respectively. The solutions also highlight the importance of fusing static characteristics for the modeling of various structures with only one network. The STFN presents a promising solution for time history response prediction across multiple structures in regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SXM发布了新的文献求助10
刚刚
duan完成签到,获得积分20
刚刚
MrCoolWu完成签到,获得积分10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
Leif应助科研通管家采纳,获得20
1秒前
ding应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
zhang完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI5应助liuguohua126采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
小星发布了新的文献求助10
2秒前
3秒前
3秒前
深情安青应助小可采纳,获得10
3秒前
4秒前
高大代容发布了新的文献求助10
4秒前
杳鸢应助张肥肥采纳,获得10
4秒前
4秒前
breath完成签到 ,获得积分10
4秒前
伊丽莎白打工完成签到,获得积分10
4秒前
cc0514gr完成签到,获得积分10
5秒前
研友_nv2r4n发布了新的文献求助10
5秒前
WxChen发布了新的文献求助20
5秒前
snowdrift完成签到,获得积分10
5秒前
5秒前
Din完成签到 ,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740