Predicting miRNA-disease Associations Based on Spectral Graph Transformer with Dynamic Attention and Regularization

计算机科学 正规化(语言学) 图形 人工智能 理论计算机科学
作者
Zhengwei Li,Xu Bai,Ru Nie,Yanyan Liu,Lei Zhang,Zhu‐Hong You
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3438439
摘要

Extensive research indicates that microRNAs (miRNAs) play a crucial role in the analysis of complex human diseases. Recently, numerous methods utilizing graph neural networks have been developed to investigate the complex relationships between miRNAs and diseases. However, these methods often face challenges in terms of overall effectiveness and are sensitive to node positioning. To address these issues, the researchers introduce DARSFormer, an advanced deep learning model that integrates dynamic attention mechanisms with a spectral graph Transformer effectively. In the DARSFormer model, a miRNA-disease heterogeneous network is constructed initially. This network undergoes spectral decomposition into eigenvalues and eigenvectors, with the eigenvalue scalars being mapped into a vector space subsequently. An orthogonal graph neural network is employed to refine the parameter matrix. The enhanced features are then input into a graph Transformer, which utilizes a dynamic attention mechanism to amalgamate features by aggregating the enhanced neighbor features of miRNA and disease nodes. A projection layer is subsequently utilized to derive the association scores between miRNAs and diseases. The performance of DARSFormer in predicting miRNA-disease associations is exemplary. It achieves an AUC of 94.18% in a five-fold cross-validation on the HMDD v2.0 database. Similarly, on HMDD v3.2, it records an AUC of 95.27%. Case studies involving colorectal, esophageal, and prostate tumors confirm 27, 28, and 26 of the top 30 associated miRNAs against the dbDEMC and miR2Disease databases, respectively. The code and data for DARSFormer are accessible at https://github.com/baibaibaialone/DARSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
DawudShan发布了新的文献求助10
4秒前
Musialucky发布了新的文献求助10
4秒前
July完成签到 ,获得积分10
5秒前
xinlei2023发布了新的文献求助10
5秒前
5秒前
天地一沙鸥完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223