Predicting miRNA-disease Associations Based on Spectral Graph Transformer with Dynamic Attention and Regularization

计算机科学 正规化(语言学) 图形 人工智能 理论计算机科学
作者
Zhengwei Li,Xu Bai,Ru Nie,Yanyan Liu,Lei Zhang,Zhu‐Hong You
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3438439
摘要

Extensive research indicates that microRNAs (miRNAs) play a crucial role in the analysis of complex human diseases. Recently, numerous methods utilizing graph neural networks have been developed to investigate the complex relationships between miRNAs and diseases. However, these methods often face challenges in terms of overall effectiveness and are sensitive to node positioning. To address these issues, the researchers introduce DARSFormer, an advanced deep learning model that integrates dynamic attention mechanisms with a spectral graph Transformer effectively. In the DARSFormer model, a miRNA-disease heterogeneous network is constructed initially. This network undergoes spectral decomposition into eigenvalues and eigenvectors, with the eigenvalue scalars being mapped into a vector space subsequently. An orthogonal graph neural network is employed to refine the parameter matrix. The enhanced features are then input into a graph Transformer, which utilizes a dynamic attention mechanism to amalgamate features by aggregating the enhanced neighbor features of miRNA and disease nodes. A projection layer is subsequently utilized to derive the association scores between miRNAs and diseases. The performance of DARSFormer in predicting miRNA-disease associations is exemplary. It achieves an AUC of 94.18% in a five-fold cross-validation on the HMDD v2.0 database. Similarly, on HMDD v3.2, it records an AUC of 95.27%. Case studies involving colorectal, esophageal, and prostate tumors confirm 27, 28, and 26 of the top 30 associated miRNAs against the dbDEMC and miR2Disease databases, respectively. The code and data for DARSFormer are accessible at https://github.com/baibaibaialone/DARSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123123完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助南佳采纳,获得10
1秒前
等一下疾风劲草完成签到,获得积分20
3秒前
LIU完成签到 ,获得积分10
3秒前
杰杰杰杰完成签到,获得积分10
3秒前
Jon发布了新的文献求助10
4秒前
歪比八不发布了新的文献求助10
5秒前
香蕉觅云应助zqy采纳,获得10
5秒前
wp4455777完成签到,获得积分10
6秒前
8秒前
10秒前
12秒前
重重发布了新的文献求助10
12秒前
歪比八不完成签到,获得积分10
14秒前
SciGPT应助zzz采纳,获得10
14秒前
悄悄完成签到 ,获得积分10
15秒前
17608283832发布了新的文献求助10
17秒前
19秒前
文艺的访曼应助asdf采纳,获得10
19秒前
外向立辉完成签到,获得积分10
20秒前
21秒前
ss完成签到,获得积分10
22秒前
23秒前
可爱万怨完成签到,获得积分10
23秒前
24秒前
科目三应助科研通管家采纳,获得10
26秒前
yznfly应助科研通管家采纳,获得200
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
只争朝夕应助squirrelcone采纳,获得10
26秒前
gkads发布了新的文献求助10
27秒前
搜集达人应助whs采纳,获得10
27秒前
隐形曼青应助千寻采纳,获得10
27秒前
28秒前
28秒前
28秒前
Lemonade完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318