Predicting miRNA-disease Associations Based on Spectral Graph Transformer with Dynamic Attention and Regularization

计算机科学 正规化(语言学) 图形 人工智能 理论计算机科学
作者
Zhengwei Li,Xu Bai,Ru Nie,Yanyan Liu,Lei Zhang,Zhu‐Hong You
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3438439
摘要

Extensive research indicates that microRNAs (miRNAs) play a crucial role in the analysis of complex human diseases. Recently, numerous methods utilizing graph neural networks have been developed to investigate the complex relationships between miRNAs and diseases. However, these methods often face challenges in terms of overall effectiveness and are sensitive to node positioning. To address these issues, the researchers introduce DARSFormer, an advanced deep learning model that integrates dynamic attention mechanisms with a spectral graph Transformer effectively. In the DARSFormer model, a miRNA-disease heterogeneous network is constructed initially. This network undergoes spectral decomposition into eigenvalues and eigenvectors, with the eigenvalue scalars being mapped into a vector space subsequently. An orthogonal graph neural network is employed to refine the parameter matrix. The enhanced features are then input into a graph Transformer, which utilizes a dynamic attention mechanism to amalgamate features by aggregating the enhanced neighbor features of miRNA and disease nodes. A projection layer is subsequently utilized to derive the association scores between miRNAs and diseases. The performance of DARSFormer in predicting miRNA-disease associations is exemplary. It achieves an AUC of 94.18% in a five-fold cross-validation on the HMDD v2.0 database. Similarly, on HMDD v3.2, it records an AUC of 95.27%. Case studies involving colorectal, esophageal, and prostate tumors confirm 27, 28, and 26 of the top 30 associated miRNAs against the dbDEMC and miR2Disease databases, respectively. The code and data for DARSFormer are accessible at https://github.com/baibaibaialone/DARSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
5秒前
6秒前
YY发布了新的文献求助10
6秒前
jacob258发布了新的文献求助50
6秒前
7秒前
ccleon完成签到,获得积分10
10秒前
sean完成签到,获得积分10
10秒前
一枚青椒发布了新的文献求助10
10秒前
Zerorrrr完成签到,获得积分20
11秒前
11秒前
11秒前
结实的半双完成签到,获得积分10
12秒前
511发布了新的文献求助10
12秒前
未来无限完成签到,获得积分10
13秒前
zr92完成签到,获得积分10
14秒前
14秒前
苏满天发布了新的文献求助10
15秒前
丘比特应助YYY666采纳,获得10
16秒前
Danminor完成签到,获得积分10
18秒前
PzLppp完成签到,获得积分10
19秒前
20秒前
20秒前
美好如凡发布了新的文献求助10
21秒前
22秒前
Carol_Wang完成签到,获得积分10
22秒前
22秒前
tianhaizhi发布了新的文献求助10
25秒前
零零发布了新的文献求助10
26秒前
Dado发布了新的文献求助20
27秒前
missinglotta发布了新的文献求助10
29秒前
369852完成签到,获得积分20
29秒前
美好如凡完成签到,获得积分10
30秒前
31秒前
31秒前
33秒前
34秒前
34秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129