亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MixSegNet: a novel crack segmentation network combining CNN and Transformer

计算机科学 人工智能 分割 卷积神经网络 深度学习 模式识别(心理学) 特征学习 特征提取 图像分割 变压器 判别式 机器学习 计算机视觉 工程类 电气工程 电压
作者
Yang Zhou,Ali Raza,Norrima Mokhtar,Sulaiman Wadi Harun,Masahiro Iwahashi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 111535-111545
标识
DOI:10.1109/access.2024.3438112
摘要

In the domain of road inspection and structural health monitoring, precise crack identification and segmentation are essential for structural safety and disaster prediction. Traditional image processing technologies encounter difficulties in detecting cracks due to their morphological diversity and complex background noise. This results in low detection accuracy and poor generalization. To overcome these challenges, this paper introduces MixSegNet, a novel deep learning model that enhances crack recognition and segmentation by integrating multi-scale features and deep feature learning. MixSegNet integrates convolutional neural networks (CNNs) and transformer architectures to enhance the detection of small cracks through the extraction and fusion of fine-grained features. Comparative evaluations against mainstream models, including LRASPP, U-Net, Deeplabv3, Swin-UNet, AttuNet, and FCN, demonstrate that MixSegNet achieves superior performance on open-source datasets. Specifically, the model achieved a precision of 95.2%, a recall of 88.2%, an F1 score of 91.5%, and a mean intersection over union (mIoU) of 84.8%, thereby demonstrating its effectiveness and reliability for crack segmentation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
甜甜纸飞机完成签到 ,获得积分10
9秒前
Eileen完成签到 ,获得积分0
11秒前
甜甜的紫菜完成签到 ,获得积分10
34秒前
48秒前
xiaozou55完成签到 ,获得积分10
1分钟前
1分钟前
ajing完成签到,获得积分10
1分钟前
2分钟前
阿泽完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ralloz完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
学习使勇哥进步完成签到,获得积分10
2分钟前
哗啦啦啦发布了新的文献求助10
3分钟前
3分钟前
万能图书馆应助McUltrman采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
McUltrman发布了新的文献求助30
4分钟前
McUltrman完成签到,获得积分10
4分钟前
哗啦啦啦完成签到,获得积分10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
5分钟前
loopy发布了新的文献求助10
5分钟前
纯真的冰蓝完成签到,获得积分10
5分钟前
丘比特应助纯真的冰蓝采纳,获得10
5分钟前
MchemG举报欢呼洋葱求助涉嫌违规
5分钟前
5分钟前
森森发布了新的文献求助10
5分钟前
notfound完成签到,获得积分10
5分钟前
6分钟前
现代丹亦发布了新的文献求助10
6分钟前
爆米花应助小李老博采纳,获得10
6分钟前
Atopos发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564965
求助须知:如何正确求助?哪些是违规求助? 4649714
关于积分的说明 14689286
捐赠科研通 4591604
什么是DOI,文献DOI怎么找? 2519322
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1462973