多硫化物
材料科学
锂(药物)
锂硫电池
硫黄
储能
能量密度
电化学
纳米技术
电化学储能
密度泛函理论
计算机科学
生化工程
工程物理
电池(电)
冶金
化学
电解质
电极
计算化学
热力学
超级电容器
工程类
物理化学
物理
功率(物理)
医学
内分泌学
作者
Ruoxi Chen,Yucheng Zhou,Jiajun He,Xiaodong Li
标识
DOI:10.1002/adfm.202407986
摘要
Abstract Lithium–sulfur (Li–S) batteries, as one of the most promising “post‐Li‐ion” energy storage devices, encounter several intrinsic challenges: polysulfide dissolution and shuttle effect, poor sulfur utilization, lithiation‐induced sulfur expansion, and lithium dendritic growth. These challenges must be resolved, and the associated mechanisms must be completely understood before the practical applications of Li–S batteries. Despite significant progress in enhancing battery capacities, experimental studies on the working mechanisms of Li–S batteries remain challenging. Alternatively, computational methods are proven useful for understanding Li–S electrochemistry and designing high‐performance Li–S batteries. This review presents recent advances in computational methods (density functional theory, molecular dynamics simulations, and finite element analysis) for Li–S batteries, compares their advantages, and summarizes their favorable applications in addressing the challenges of Li–S batteries. Computational methods should find more applications in the development of Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI