Factor-augmented transformation models for interval-censored failure time data.

转化(遗传学) 区间(图论) 统计 计算机科学 因子(编程语言) 计量经济学 数学 组合数学 生物 生物化学 基因 程序设计语言
作者
Hongxi Li,Shuwei Li,Liuquan Sun,Xinyuan Song
出处
期刊:PubMed 卷期号:80 (3)
标识
DOI:10.1093/biomtc/ujae078
摘要

Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助酷炫冰安采纳,获得30
1秒前
华仔应助sun采纳,获得30
5秒前
pl完成签到 ,获得积分10
5秒前
bbj发布了新的文献求助10
5秒前
文艺寄灵完成签到,获得积分10
8秒前
ZDS完成签到,获得积分10
10秒前
小蘑菇应助妖妖灵采纳,获得10
12秒前
12秒前
14秒前
唔西迪西完成签到 ,获得积分10
15秒前
15秒前
茜茜发布了新的文献求助10
17秒前
Foxjker完成签到 ,获得积分10
18秒前
情怀应助sun采纳,获得10
21秒前
21秒前
22秒前
末末完成签到 ,获得积分10
22秒前
23秒前
Ganfei发布了新的文献求助10
24秒前
王阳洋应助芒果采纳,获得10
26秒前
27秒前
hgf应助郑大钱采纳,获得20
28秒前
29秒前
小马甲应助Enoch采纳,获得10
31秒前
32秒前
时雨濛濛完成签到 ,获得积分10
32秒前
lzy完成签到,获得积分10
33秒前
mmmmmmgm发布了新的文献求助10
35秒前
36秒前
茜茜完成签到 ,获得积分10
37秒前
燕燕于飞发布了新的文献求助10
38秒前
sun发布了新的文献求助10
39秒前
Ning完成签到,获得积分10
41秒前
猪猪hero发布了新的文献求助10
43秒前
anny.white完成签到,获得积分10
43秒前
斯文败类应助harvey采纳,获得10
44秒前
44秒前
46秒前
46秒前
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731