AS-APF: Encoding time series as images for human activity recognition with SK-based convolutional networks

计算机科学 编码 人工智能 编码(内存) 卷积神经网络 活动识别 模式识别(心理学) 领域(数学) 编码(社会科学) 计算机视觉 数学 生物化学 基因 统计 化学 纯数学
作者
Hailong Rong,H.H. Wang,Tianlei Jin,Xiaohui Wu,Ling Zou
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241269805
摘要

The latest advancement in human activity recognition (HAR) involves the use of deep neural networks to achieve greater accuracy in the classification of various activities. A popular approach in the field is to encode time series data from inertial sensors into images and then apply techniques from computer vision to analyze the data. However, encoding into images often leads to a significant surge in the amount of data and a subsequent rise in computational cost, making this method less efficient for real-world applications. In this paper, we propose a novel image-coding approach, alternating sampling amplitude-phase field (AS-APF), and a multi-sensor fusion framework based on selective kernel (SK). AS-APF can reduce the amount of image data while ensuring the integrity and representativeness of the data. Because it splits the time series and preserves the main feature information. We introduce SK to learn multi-scale features in HAR instead of a fixed receptive fields (RFs) size. Our experimental results demonstrate that our approach outperforms previous encoding methods in both accuracy and time efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
大龙哥886应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得30
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
GPTea应助科研通管家采纳,获得20
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
土豆完成签到,获得积分10
1秒前
Jasper应助zyq采纳,获得10
2秒前
yz发布了新的文献求助10
2秒前
今天也要开心呀完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
4秒前
koipolaris发布了新的文献求助30
4秒前
冬灵发布了新的文献求助10
4秒前
赘婿应助吴畅采纳,获得10
5秒前
5秒前
852应助落后的小猫咪采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537391
求助须知:如何正确求助?哪些是违规求助? 4624943
关于积分的说明 14593976
捐赠科研通 4565472
什么是DOI,文献DOI怎么找? 2502391
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452206