Antioxidant activity of ultrasonic assisted ethanol extract of Ainsliaea acerifolia and prediction of antioxidant activity with machine learning

抗氧化剂 萃取(化学) 响应面法 乙醇 生物系统 机器学习 材料科学 化学 色谱法 数学 计算机科学 生物化学 生物
作者
Hyeon Cheol Kim,Si Young Ha,Jae‐Kyung Yang
出处
期刊:Bioresources [North Carolina State University]
卷期号:19 (4): 7637-7652
标识
DOI:10.15376/biores.19.4.7637-7652
摘要

The antioxidant properties of Ainsliaea acerifolia, a wild edible plant, were examined by ultrasonic-assisted ethanol extraction methods. The primary objective was to optimize the extraction conditions and accurately predict antioxidant activities using advanced machine learning models. The extraction conditions were optimized using Response Surface Methodology (RSM). Various parameters, including temperature, extraction time, and ethanol concentration, were adjusted to maximize antioxidant activity. The optimal conditions identified were a temperature of 68 °C, an extraction time of 86 min, and an ethanol concentration of 57%. Under these conditions, the extracts exhibited the highest antioxidant activity. To enhance the predictive accuracy of antioxidant activity, an XGBoost (XGB) model was employed. The XGB model performance was evaluated and compared with the RSM model. The XGB model achieved an R² value of 94.71%, significantly outperforming the RSM model by 12.8%. This highlights the superiority of the XGB model in predicting antioxidant activities based on the given extraction parameters. Additionally, the study developed a graphical user interface (GUI). This GUI allows researchers and industry experts to input extraction conditions and obtain quick, accurate predictions of antioxidant activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小鱼完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
糟糕的立辉完成签到,获得积分10
3秒前
沉静楷瑞完成签到,获得积分10
3秒前
4秒前
大力的迎松完成签到,获得积分20
5秒前
12发布了新的文献求助10
6秒前
BadBoy发布了新的文献求助10
6秒前
7秒前
7秒前
hdblk完成签到,获得积分10
8秒前
lxptsd完成签到,获得积分10
9秒前
10秒前
所所应助茶弥采纳,获得10
10秒前
11秒前
hhyy完成签到 ,获得积分10
11秒前
wennn完成签到 ,获得积分10
13秒前
aaaaaa发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
azzz完成签到,获得积分10
15秒前
星辰大海应助GGbound采纳,获得10
16秒前
强健的乐天完成签到,获得积分10
16秒前
16秒前
17秒前
田様应助下雨采纳,获得10
18秒前
扶桑发布了新的文献求助10
18秒前
19秒前
kingwill应助万物安生采纳,获得20
20秒前
Ciro发布了新的文献求助10
22秒前
23秒前
23秒前
田様应助GodZ采纳,获得10
25秒前
yongnamhui完成签到,获得积分10
25秒前
scc完成签到,获得积分10
26秒前
铭心发布了新的文献求助10
26秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501