材料科学
光催化
电子
结合
生产(经济)
纳米技术
化学工程
光化学
催化作用
物理
有机化学
工程类
数学分析
宏观经济学
经济
化学
量子力学
数学
作者
Ronglan Pan,Wei Lv,Xin Ge,Xiong Huang,Qichuan Hu,Kejian Song,Qiong Liu,Haibo Xie,Bo Wu,Jili Yuan
标识
DOI:10.1002/adfm.202414193
摘要
Abstract Photocatalytic oxygen reduction to H 2 O 2 based on g‐C 3 N 4 has presented promising potential for sustainable solar‐fuel production. Yet tuning the timescale of hot electron's lifetime to effectively participate in the surface reactions remains challenging. Here, an electron‐deficient engineering strategy is developed by incorporating an electron‐deficient structure (EDS) with different conjugate regions into large conjugate‐heptazine framework (LCHF) of g‐C 3 N 4 to steer hot electrons of the different timescales to effectively activate O 2 for efficient photocatalytic H 2 O 2 production. Femtosecond transientabsorption spectroscopy reveals that introducing EDS into LCHF can steer hot electron rapid transfer to the trapping sites of EDS and notably eliminate the deeply trapped electrons as well as enhance the shallow capture. It is demonstrated that pyromellitic dianhydride not only can tune the lifetime scale of hot electrons but also provide nonpolarized active sites to effectively activate O 2 forming H 2 O 2 with lower energy barrier via direct or stepwise 2e − pathways. This photocatalyst achieves an H 2 O 2 yield rate of 25.40 mmol g −1 h −1 , enabling an apparentquantumyield of 45.7% at 400 nm and a solar‐to‐chemical efficiency of 2.63%, outperforming the other reported photocatalysts. This work will shed light on the design of organic photocatalysts to tune hot electrons to effectively engage in the surface reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI