Fault diagnosis method of Bayesian network based on association rules

贝叶斯网络 断层(地质) 计算机科学 关联规则学习 联想(心理学) 数据挖掘 贝叶斯概率 数据关联 人工智能 概率逻辑 地质学 心理学 地震学 心理治疗师
作者
Jinhua Wang,Ma Xuehua,Jie Cao
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
被引量:1
标识
DOI:10.1177/01423312241267256
摘要

When the number of samples is large, the scale of the Bayesian network (BN) structure search space increases exponentially with the number of nodes, resulting in a sharp increase in the difficulty of learning the BN structure. Aiming at this problem, this paper proposes a fault diagnosis model construction method combining association rules and a BN network. The Euclidean distance under the Symbolic Aggregation Approximation (SAX) algorithm is utilized to compute and average the distance between the standard and faulty samples and filter the candidate nodes by the average value, which in turn reduces the search sample space. The method of combining Association Rules algorithm with traditional BN structure learning results is used to solve the problem of wrong edges in structure learning. Finally, the maximum likelihood estimation method is used for parameter learning to complete the construction of the diagnostic network. The experimental results show that the running time of the Bayesian Network based on the Association Rules (AR-BN) model proposed in this paper is short and that the Hamming distance with the original structure is small, so this model can effectively reduce the search space and solve the problem of wrong edges, and it also has a good performance in fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观道罡发布了新的文献求助10
1秒前
hehe完成签到,获得积分10
1秒前
zxz发布了新的文献求助10
2秒前
2秒前
阳光的冥幽完成签到 ,获得积分10
2秒前
CipherSage应助左悬月采纳,获得10
3秒前
3秒前
3秒前
阳胜军发布了新的文献求助10
3秒前
4秒前
英俊的铭应助俊逸寄灵采纳,获得10
5秒前
7秒前
程笑笑完成签到 ,获得积分10
7秒前
壮观道罡完成签到,获得积分20
8秒前
9秒前
10秒前
阳胜军完成签到,获得积分10
11秒前
zxz完成签到,获得积分10
12秒前
orixero应助失眠的蓝采纳,获得10
13秒前
13秒前
14秒前
harden完成签到,获得积分10
15秒前
Akim应助青木香采纳,获得10
16秒前
allshestar完成签到 ,获得积分0
17秒前
helpme完成签到,获得积分10
19秒前
完美世界应助Wj采纳,获得10
19秒前
20秒前
自然的翠容完成签到,获得积分10
20秒前
樊珩发布了新的文献求助10
21秒前
21秒前
22秒前
无花果应助Frost采纳,获得10
25秒前
11111应助笃定采纳,获得10
26秒前
singefly完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
骆如雪发布了新的文献求助10
29秒前
31秒前
31秒前
高分求助中
All the Birds of the World 2000
Soviet Aid to the Third World: The Facts and Figures 500
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3716178
求助须知:如何正确求助?哪些是违规求助? 3262778
关于积分的说明 9926746
捐赠科研通 2976707
什么是DOI,文献DOI怎么找? 1632459
邀请新用户注册赠送积分活动 774439
科研通“疑难数据库(出版商)”最低求助积分说明 744980