材料科学
掠入射小角散射
结晶度
化学工程
锂(药物)
氧化物
电化学
纳米技术
散射
复合材料
光学
化学
小角中子散射
电极
冶金
物理化学
医学
物理
中子散射
内分泌学
工程类
作者
Yuxin Liang,Tianle Zheng,Kun Sun,Zhuijun Xu,Tianfu Guan,Fabian A. C. Apfelbeck,Ding Pan,Ian D. Sharp,Ya‐Jun Cheng,Matthias Schwartzkopf,Stephan V. Roth,Peter Müller‐Buschbaum
出处
期刊:Meeting abstracts
日期:2024-08-09
卷期号:MA2024-01 (2): 341-341
标识
DOI:10.1149/ma2024-012341mtgabs
摘要
Polyethylene oxide (PEO)-based composite electrolytes (PCEs) are considered as the promising candidates for next generation lithium metal batteries due to its high safety, easy fabrication and good electrochemical stability. However, the material suffers from low conductivity and high crystallinity of the ethylene oxide (EO) chain, which inhibits its commercialization. Therefore, it is crucial to understand the electrochemcial process as well as Li + transfer pathway within PEO-based batteries. Using operando grazing-incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS) in Li||Cu cell framework, we find that the electrochemical reaction within the PCE is highly correlated with the evolution of the buried morphology and crystalline structure evolution of the PCE. This two irreversible reactions, PEO-Li + reduction and TFSI - decomposition, cause changes in both the crystalline structure and morphology of the PCE. In addition, the reversible Li plating/stripping process alters the inner morphology, especially the PEO-LiTFSI domain radius, rather than causing crystalline structure changes. This work provides a new path to monitor a working battery in real time, thereby enabling detailed understanding of electrochemically-induced changes of the microscopic morphology and crystalline structure of PCE, which is essential for developing high transferable and interface stable PCE-based lithium metal batteries. Figure 1
科研通智能强力驱动
Strongly Powered by AbleSci AI