Mechanics of Two‐Dimensional Materials

机械 材料科学 物理
作者
Olugbenga Ogunbiyi,Yingchao Yang
标识
DOI:10.1002/9783527842308.ch4
摘要

Over the past decade, two-dimensional (2D) crystals have been the focal point of nanoscience. Graphene, discovered in 2004, initiated the exploration of this field, with transition-metal dichalcogenides (TMDs) also garnering significant attention. The unique orbital symmetry within the honeycomb structure underpins various exceptional properties, spanning electrical, thermal, optical, and mechanical realms. Among the array of 2D materials, graphene, graphene oxide (GO), MoS 2 , and h -BN stand out as superstars, with extensive investigations into their properties and potential applications as next-generation materials. The mechanical analysis of 2D crystals not only elucidates potential applications but also unveils their distinctive mechanical behaviors. Numerous fields, including super-strong nanocomposites and flexible electronics, necessitate mechanical assessments of these crystals. Moreover, comprehending the nano-/micro-mechanisms governing deformation and fracture behavior in 2D crystals holds paramount importance in fundamental science. This chapter delves deeply into the mechanical characterizations-elasticity, fracture strength, fracture toughness, frictional behavior, and strain engineering-of graphene. Some of these mechanical assessments extend to other 2D crystals like graphene oxide, MoS 2 , and h -BN. Experimental measurements and theoretical calculations are compared, discussed, and summarized, revealing significant disparities across different techniques and simulations. For instance, while it's widely accepted that grain boundaries and initial cracks can weaken crystal strength, recent findings suggest that these factors, regardless of size, might not necessarily correlate with fracture strength. Given the ongoing debates surrounding the mechanical properties and behaviors of 2D crystals, coupled with the incomplete mechanical characterization of low-dimensional materials, there is a pressing need for more extensive and comprehensive studies to further our understanding of these novel and promising materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BEGIN完成签到,获得积分10
刚刚
DH发布了新的文献求助10
2秒前
zlc完成签到,获得积分10
2秒前
liwang完成签到,获得积分10
3秒前
Jonathan完成签到,获得积分10
3秒前
羊羊发布了新的文献求助10
4秒前
榛糕李完成签到,获得积分10
5秒前
健忘芹完成签到,获得积分20
5秒前
5秒前
6秒前
bkagyin应助摆哥采纳,获得10
7秒前
刘宸希完成签到 ,获得积分10
7秒前
9秒前
辛勤夜柳发布了新的文献求助10
9秒前
10秒前
11秒前
打打应助怕孤独的海瑶采纳,获得10
11秒前
Zenia应助小鱼采纳,获得10
12秒前
12秒前
默默的斑马完成签到,获得积分10
12秒前
科研大印发布了新的文献求助10
13秒前
Lucas应助RunsenXu采纳,获得10
13秒前
科研通AI6应助www采纳,获得10
13秒前
shuang完成签到 ,获得积分10
14秒前
Ysk完成签到,获得积分10
14秒前
脑洞疼应助MCL1021采纳,获得10
15秒前
智丹发布了新的文献求助10
16秒前
sci来来来完成签到,获得积分10
16秒前
wlscj给传统的孤丝的求助进行了留言
16秒前
WTaMi发布了新的文献求助10
17秒前
朱博超发布了新的文献求助10
18秒前
傻子也能搞学术吗完成签到 ,获得积分10
18秒前
19秒前
19秒前
无花果应助科研大印采纳,获得10
20秒前
Akim应助ltxinanjiao采纳,获得10
21秒前
sci来来来发布了新的文献求助10
21秒前
慕青应助LIO采纳,获得10
22秒前
22秒前
李爱国应助摆哥采纳,获得10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544