Fabric defect detection algorithm based on improved YOLOv8

骨干网 块(置换群论) 模式识别(心理学) 算法 特征(语言学) 棱锥(几何) 计算机科学 人工智能 数学 计算机网络 语言学 哲学 几何学
作者
Chen Chang,Qihong Zhou,Shujia Li,Dong Luo,Gaochao Tan
出处
期刊:Textile Research Journal [SAGE]
被引量:1
标识
DOI:10.1177/00405175241261092
摘要

Aiming at the problems of low detection accuracy and high leakage rate in traditional detection algorithms, an improved YOLOv8 algorithm is proposed for automatic detection of fabric defects. A swin transformer block was added to the C2f module in the backbone network, which can transfer information between multiple attention layers in parallel to capture fabric defect information and improve the detection accuracy of small-sized defects. To enhance the model’s performance in detecting defects of various sizes, a bidirectional feature pyramid network (BiFPN) was incorporated into the neck. This allows for the assignment of different weights to defect features in different layers. A convolution block attention module (CBAM) was added to the feature fusion layer, enabling the model to automatically increase the weight of essential features and suppress nonessential features during training to solve the problem of leakage detection of small-sized defects due to occlusion and background confusion. The Wise-IoU (WIoU) loss function replaces the conventional loss function, addressing sample imbalance and directing the model to prioritize average-quality samples. This modification contributes to an overall improvement in the model’s performance. The results of the experiment proved that on the self-constructed fabric defect dataset, the algorithm in this paper achieved an accuracy of 97.7%, recall of 95.1%, and mAP of 96.8%, which are 4.4%, 9.4%, and 5.1% higher than those of the YOLOv8 algorithm, respectively. On the AliCloud Tianchi dataset, the algorithm achieves 52.3%, 49.2%, and 49.8% in terms of accuracy, recall, and mAP, respectively, which is an improvement of 4.4% in terms of accuracy, 2.8% in terms of recall, and 2.7% in terms of mAP compared with the baseline algorithm. The improved YOLOv8 algorithm has a high detection accuracy, low leakage rate, and a detection speed of 107.5 FPS, which aligns with the real-time defect detection speed in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aaa完成签到,获得积分10
1秒前
YMM发布了新的文献求助10
1秒前
英俊的铭应助张立人采纳,获得10
2秒前
3秒前
风趣的小蚂蚁完成签到,获得积分10
4秒前
辛勤香岚发布了新的文献求助10
6秒前
氵云发布了新的文献求助50
7秒前
8秒前
TOMORI酱发布了新的文献求助10
9秒前
田様应助自信的冬日采纳,获得10
10秒前
曦子曦子应助周欣采纳,获得10
12秒前
铁柱完成签到,获得积分10
12秒前
yyl完成签到 ,获得积分10
13秒前
14秒前
刘秀完成签到 ,获得积分10
15秒前
玄音完成签到,获得积分10
16秒前
18秒前
无花果应助优雅沛文采纳,获得10
18秒前
汉堡包应助岁月旧曾谙采纳,获得10
19秒前
Akim应助felix采纳,获得10
19秒前
大个应助felix采纳,获得10
19秒前
星辰大海应助felix采纳,获得10
19秒前
打打应助felix采纳,获得10
19秒前
22秒前
22秒前
猪琳发布了新的文献求助10
23秒前
周欣应助文件撤销了驳回
23秒前
24秒前
24秒前
单薄茗发布了新的文献求助10
24秒前
无花果应助时尚的电脑采纳,获得10
26秒前
XINYUZHU完成签到,获得积分10
26秒前
852应助陈媛采纳,获得10
27秒前
27秒前
27秒前
多送点发布了新的文献求助50
28秒前
鲤鱼依白完成签到 ,获得积分10
28秒前
寒冷妙梦发布了新的文献求助10
28秒前
29秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3058279
求助须知:如何正确求助?哪些是违规求助? 2714388
关于积分的说明 7440415
捐赠科研通 2359676
什么是DOI,文献DOI怎么找? 1250252
科研通“疑难数据库(出版商)”最低求助积分说明 607401
版权声明 596410