Research on Load Decomposition and Optimization of Intelligent Elderly Care Service Based on Heuristic and Event Detection Algorithm

启发式 元启发式 事件(粒子物理) 分解 计算机科学 服务(商务) 算法 人工智能 业务 生态学 物理 量子力学 营销 生物
作者
Lin Miao,Zhiwei Liao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156424400470
摘要

Against the backdrop of the digital age, the openness, equality and interaction of the Internet economy have injected new vitality into China’s traditional industries. The application of big data technology, especially in information integration and analysis, has become a key force in promoting the sustainable and healthy development of the national economy. This study focuses on the “Internet +” environment, discusses the impact of the aging problem of community workers on home care services, and proposes an optimization scheme based on a heuristic algorithm. The heuristic algorithm, inspired by the foraging behavior of ants in nature, optimizes the route selection problem by simulating an ant colony to choose the path with a high concentration of pheromones and shows outstanding application potential in the field of home care. The accuracy of the event detection algorithm is directly related to the performance of the load decomposition algorithm, and the change point detection algorithm can effectively identify the change point of the probability distribution in the time series data, which provides important input data for unsupervised clustering. Advanced computer theory, including the Hidden Markov model (HMM) and swarm intelligence optimization algorithm, is used in this research. By comparing different swarm intelligence algorithms, we find that the standard Gray Wolf optimization (SGWO) model is better than the basic Gray Wolf optimization (BGWO) algorithm and the improved Gray Wolf optimization (DGWO) algorithm in terms of stability and output results. The SGWO model significantly improves the efficiency of the load decomposition algorithm, which has been verified in the application of the smart elderly care service platform. The platform not only supports the operation of related technologies and information products but also realizes the seamless integration of information among various subjects of elderly care services. In addition, the factor hidden in the Markov model that can be selectively activated effectively monitors equipment status in the Internet of Things environment, provides real-time monitoring of user consumption behavior and fault information and further enhances the quality and efficiency of smart elderly care services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
复照完成签到,获得积分10
1秒前
hz完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
明天不打球完成签到,获得积分10
4秒前
5秒前
duoduoqian完成签到,获得积分10
6秒前
西西发布了新的文献求助10
6秒前
DeXu完成签到 ,获得积分10
7秒前
8秒前
9秒前
123456发布了新的文献求助10
10秒前
时之沙完成签到,获得积分10
10秒前
LFJ发布了新的文献求助10
11秒前
12秒前
Violet发布了新的文献求助30
13秒前
小琪猪发布了新的文献求助10
14秒前
哎嘿应助leileiyang采纳,获得10
15秒前
阿媛呐完成签到,获得积分10
15秒前
Arbitrary完成签到,获得积分10
16秒前
心台完成签到,获得积分10
16秒前
西西完成签到,获得积分10
18秒前
xixi发布了新的文献求助10
18秒前
Akim应助想要毕业采纳,获得30
18秒前
小马甲应助imshao采纳,获得10
20秒前
Eastonlyzhang完成签到 ,获得积分10
22秒前
学渣小林完成签到,获得积分10
24秒前
spk发布了新的文献求助20
25秒前
dsslc完成签到,获得积分10
26秒前
糊涂少女i完成签到 ,获得积分10
26秒前
Feiruxu发布了新的文献求助10
27秒前
YXG完成签到,获得积分10
28秒前
陶ni吉吉完成签到,获得积分10
30秒前
不配.应助科研小肖采纳,获得20
31秒前
哎嘿应助愉悦采纳,获得10
33秒前
hxscu完成签到 ,获得积分10
33秒前
斯文败类应助lilia采纳,获得10
34秒前
青衍应助LFJ采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765