Research on Load Decomposition and Optimization of Intelligent Elderly Care Service Based on Heuristic and Event Detection Algorithm

启发式 元启发式 事件(粒子物理) 分解 计算机科学 服务(商务) 算法 人工智能 业务 生态学 物理 量子力学 营销 生物
作者
Lin Miao,Zhiwei Liao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156424400470
摘要

Against the backdrop of the digital age, the openness, equality and interaction of the Internet economy have injected new vitality into China’s traditional industries. The application of big data technology, especially in information integration and analysis, has become a key force in promoting the sustainable and healthy development of the national economy. This study focuses on the “Internet +” environment, discusses the impact of the aging problem of community workers on home care services, and proposes an optimization scheme based on a heuristic algorithm. The heuristic algorithm, inspired by the foraging behavior of ants in nature, optimizes the route selection problem by simulating an ant colony to choose the path with a high concentration of pheromones and shows outstanding application potential in the field of home care. The accuracy of the event detection algorithm is directly related to the performance of the load decomposition algorithm, and the change point detection algorithm can effectively identify the change point of the probability distribution in the time series data, which provides important input data for unsupervised clustering. Advanced computer theory, including the Hidden Markov model (HMM) and swarm intelligence optimization algorithm, is used in this research. By comparing different swarm intelligence algorithms, we find that the standard Gray Wolf optimization (SGWO) model is better than the basic Gray Wolf optimization (BGWO) algorithm and the improved Gray Wolf optimization (DGWO) algorithm in terms of stability and output results. The SGWO model significantly improves the efficiency of the load decomposition algorithm, which has been verified in the application of the smart elderly care service platform. The platform not only supports the operation of related technologies and information products but also realizes the seamless integration of information among various subjects of elderly care services. In addition, the factor hidden in the Markov model that can be selectively activated effectively monitors equipment status in the Internet of Things environment, provides real-time monitoring of user consumption behavior and fault information and further enhances the quality and efficiency of smart elderly care services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得100
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
blue完成签到,获得积分10
1秒前
研友_Z6Qrbn发布了新的文献求助10
3秒前
Panda完成签到,获得积分10
4秒前
4秒前
7秒前
天空之下发布了新的文献求助10
7秒前
7秒前
小豆芽完成签到,获得积分10
7秒前
无花果应助zxd采纳,获得10
7秒前
8秒前
顾矜应助wergou采纳,获得10
8秒前
8秒前
科研通AI6应助王旭采纳,获得10
8秒前
9秒前
9秒前
yk123发布了新的文献求助10
10秒前
hiter发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
11秒前
Amostre88完成签到,获得积分10
12秒前
bonnie发布了新的文献求助10
12秒前
李可发布了新的文献求助10
12秒前
乾明少侠完成签到 ,获得积分0
13秒前
CipherSage应助wt采纳,获得10
13秒前
may完成签到,获得积分10
13秒前
14秒前
何hyy发布了新的文献求助10
15秒前
DavidShaw发布了新的文献求助10
16秒前
jzpPLA完成签到,获得积分10
16秒前
16秒前
共享精神应助rosyw采纳,获得10
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920