From Solid to Fluid: Novel Approaches in Neuromorphic Engineering

神经形态工程学 记忆电阻器 计算机科学 维数之咒 电阻式触摸屏 人工神经网络 纳米技术 人工智能 材料科学 电子工程 计算机体系结构 工程类 计算机视觉
作者
Daniil Nikitin,Hynek Biederman,А. Х. Шукуров
出处
期刊:Recent Patents on Nanotechnology 卷期号:19
标识
DOI:10.2174/0118722105305259240919074119
摘要

Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, i.e., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysssbq完成签到,获得积分10
刚刚
Cimon发布了新的文献求助10
刚刚
刚刚
1秒前
chhwang66完成签到,获得积分10
1秒前
安澜完成签到,获得积分20
2秒前
2秒前
我是老大应助老妖采纳,获得10
3秒前
123发布了新的文献求助20
3秒前
情怀应助zwhy采纳,获得10
4秒前
wuwu发布了新的文献求助10
4秒前
4秒前
李红跃发布了新的文献求助10
4秒前
Lan完成签到,获得积分10
4秒前
WWXWWX应助钱浩采纳,获得10
5秒前
5秒前
WWXWWX应助钱浩采纳,获得10
6秒前
Wang发布了新的文献求助10
6秒前
Ramalina发布了新的文献求助10
6秒前
abjz完成签到,获得积分10
6秒前
放火陈老魔完成签到,获得积分10
7秒前
7秒前
温柔梦曼完成签到,获得积分10
7秒前
SciGPT应助冷艳的白秋采纳,获得10
8秒前
科研通AI2S应助踏实的中蓝采纳,获得10
8秒前
桐桐应助清脆的天亦采纳,获得10
8秒前
9秒前
奋斗的夏兰完成签到,获得积分10
9秒前
11秒前
wlkk完成签到,获得积分10
11秒前
赘婿应助mengdewen采纳,获得10
12秒前
小胡发布了新的文献求助10
12秒前
shit完成签到 ,获得积分10
12秒前
桐桐应助Cimon采纳,获得10
12秒前
天天快乐应助单纯的笋采纳,获得10
13秒前
十三月应助科研能采纳,获得10
14秒前
若清应助指导灰采纳,获得10
14秒前
Frose完成签到,获得积分10
14秒前
15秒前
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083