From Solid to Fluid: Novel Approaches in Neuromorphic Engineering

神经形态工程学 记忆电阻器 计算机科学 维数之咒 电阻式触摸屏 人工神经网络 纳米技术 人工智能 材料科学 电子工程 计算机体系结构 工程类 计算机视觉
作者
Daniil Nikitin,Hynek Biederman,А. Х. Шукуров
出处
期刊:Recent Patents on Nanotechnology [Bentham Science Publishers]
卷期号:19 被引量:1
标识
DOI:10.2174/0118722105305259240919074119
摘要

Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, i.e., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
中单阿飞发布了新的文献求助10
刚刚
在水一方应助小健采纳,获得10
1秒前
田様应助橙子采纳,获得10
1秒前
赘婿应助福尔摩云采纳,获得30
2秒前
2秒前
hayin完成签到 ,获得积分10
3秒前
whishark完成签到,获得积分20
3秒前
Goblin完成签到,获得积分10
3秒前
脑洞疼应助斯文雪青采纳,获得10
3秒前
在水一方应助Moments采纳,获得10
6秒前
Ally发布了新的文献求助200
6秒前
瞒总发布了新的文献求助10
6秒前
Erika完成签到,获得积分10
8秒前
9秒前
Wxj246801完成签到,获得积分20
9秒前
CarryZ8完成签到,获得积分10
10秒前
禧煦给禧煦的求助进行了留言
11秒前
Erika发布了新的文献求助10
14秒前
杨恭鑫发布了新的文献求助10
16秒前
小蚂蚁完成签到,获得积分10
16秒前
Y.完成签到,获得积分10
17秒前
邓娅琴完成签到 ,获得积分10
17秒前
18秒前
感动的大树完成签到,获得积分10
18秒前
19秒前
飘逸的又夏完成签到 ,获得积分10
20秒前
haha完成签到 ,获得积分10
21秒前
CipherSage应助顺顺采纳,获得10
21秒前
24秒前
27秒前
科研通AI2S应助猪猪hero采纳,获得10
27秒前
Lv完成签到,获得积分10
29秒前
阿飞飞啊发布了新的文献求助10
29秒前
夜雨微眠完成签到,获得积分10
32秒前
研友_n0kYwL发布了新的文献求助10
32秒前
木子完成签到 ,获得积分10
34秒前
36秒前
37秒前
小潘完成签到,获得积分10
39秒前
sb完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499138
求助须知:如何正确求助?哪些是违规求助? 4596150
关于积分的说明 14452711
捐赠科研通 4529291
什么是DOI,文献DOI怎么找? 2481892
邀请新用户注册赠送积分活动 1465918
关于科研通互助平台的介绍 1438802