From Solid to Fluid: Novel Approaches in Neuromorphic Engineering

神经形态工程学 记忆电阻器 计算机科学 维数之咒 电阻式触摸屏 人工神经网络 纳米技术 人工智能 材料科学 电子工程 计算机体系结构 工程类 计算机视觉
作者
Daniil Nikitin,Hynek Biederman,А. Х. Шукуров
出处
期刊:Recent Patents on Nanotechnology [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0118722105305259240919074119
摘要

Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, i.e., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
家伟发布了新的文献求助20
1秒前
2秒前
科研通AI2S应助js110采纳,获得10
2秒前
3秒前
3秒前
domingo发布了新的文献求助10
3秒前
3秒前
打打应助linshiba_18采纳,获得30
4秒前
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
峥嵘岁月何惧风流完成签到,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
若ruofeng应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得50
5秒前
Hello应助科研通管家采纳,获得10
5秒前
123lura应助科研通管家采纳,获得50
5秒前
李健应助科研通管家采纳,获得30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
打工肥仔应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
苏摩i发布了新的文献求助10
8秒前
8秒前
泛滥空间发布了新的文献求助10
8秒前
9秒前
Jackson333完成签到,获得积分10
9秒前
Jasper应助111采纳,获得10
9秒前
10秒前
研友_8DVdzn发布了新的文献求助10
10秒前
趙途嘵生发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521