From Solid to Fluid: Novel Approaches in Neuromorphic Engineering

神经形态工程学 记忆电阻器 计算机科学 维数之咒 电阻式触摸屏 人工神经网络 纳米技术 人工智能 材料科学 电子工程 计算机体系结构 工程类 计算机视觉
作者
Daniil Nikitin,Hynek Biederman,А. Х. Шукуров
出处
期刊:Recent Patents on Nanotechnology [Bentham Science Publishers]
卷期号:19 被引量:2
标识
DOI:10.2174/0118722105305259240919074119
摘要

Neuromorphic engineering is rapidly developing as an approach to mimicking processesin brains using artificial memristors, devices that change conductivity in response to the electricalfield (resistive switching effect). Memristor-based neuromorphic systems can overcome the existingproblems of slow and energy-inefficient computing that conventional processors face. In the Introduction,the basic principles of memristor operation and its applications are given. The history ofswitching in sandwich structures and granular metals is reviewed in the Historical Overview. Particularattention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), whichdemonstrated the first evidence of resistive switching and predicted the filamentary mechanism ofswitching. Multi-dimensionality in neuromorphic systems: Despite the powerful computationalabilities of traditional memristor arrays, they cannot repeat many organizational characteristics ofbiological neural networks, i.e., their multi-dimensionality. This part reviews the unconventionalnanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential foruse in reservoir computing due to the unique spiking change in conductance similar to firing in neurons.Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquidstate broadens the possibilities for mimicking biological processes. In this section, ionic currentmemristors are reviewed and, the working principles of which bring us closer to the mechanisms ofinformation transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineeringlinked to the application of nanofluids for the formation of reconfigurable nanoparticle networkswith memristive properties is given in this section. The Conclusion t summarizes the bullet points ofthe Review and provides an outlook on the future of liquid-state neuromorphic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Suki完成签到,获得积分10
刚刚
领导范儿应助如何呢采纳,获得10
1秒前
MICO发布了新的文献求助10
1秒前
1秒前
May完成签到,获得积分10
1秒前
1a完成签到 ,获得积分10
2秒前
lx123发布了新的文献求助10
2秒前
隐形曼青应助Nick采纳,获得10
2秒前
猫一样的完成签到,获得积分10
2秒前
踏实的谷蕊完成签到,获得积分10
2秒前
大朋友发布了新的文献求助10
2秒前
orixero应助臭小子采纳,获得10
3秒前
3秒前
lixin发布了新的文献求助10
3秒前
杨杨完成签到,获得积分10
4秒前
lizhiqian2024发布了新的文献求助10
4秒前
Grayson关注了科研通微信公众号
5秒前
5秒前
给胸毛做spa完成签到,获得积分10
5秒前
好运爆彭完成签到,获得积分10
5秒前
5秒前
豆子完成签到,获得积分10
5秒前
Genetrix应助了一李采纳,获得20
6秒前
无花果应助伶俐如冰采纳,获得10
6秒前
骑着我的毛豆Y去战斗关注了科研通微信公众号
6秒前
Denmark发布了新的文献求助50
6秒前
路瑶瑶发布了新的文献求助10
6秒前
金角完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助科研大捞采纳,获得10
7秒前
7秒前
3080完成签到,获得积分10
7秒前
7秒前
碧蓝青梦发布了新的文献求助10
8秒前
顾矜应助JoaquinH采纳,获得10
9秒前
默默善愁发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300