A comprehensive review of soil organic carbon estimates: Integrating remote sensing and machine learning technologies

遥感 土壤碳 环境科学 碳纤维 计算机科学 地球科学 环境资源管理 土壤科学 土壤水分 地质学 算法 复合数
作者
Tong Li,Lizhen Cui,Matthias Kuhnert,Timothy I. McLaren,Rajiv Pandey,Hongdou Liu,Weijin Wang,Zhihong Xu,Anquan Xia,Ram C. Dalal,Yash P. Dang
出处
期刊:Journal of Soils and Sediments [Springer Nature]
卷期号:24 (11): 3556-3571
标识
DOI:10.1007/s11368-024-03913-8
摘要

Abstract Purpose Accurately assessing soil organic carbon (SOC) content is vital for ecosystem services management and addressing global climate challenges. This study undertakes a comprehensive bibliometric analysis of global estimates for SOC using remote sensing (RS) and machine learning (ML) techniques. It showcases the historical growth and thematic evolution in SOC research, aiming to amplify the understanding of SOC estimation themes and provide scientific support for climate change adaptation and mitigation. Materials and Methods Employing extensive literature database analysis, bibliometric network analysis, and clustering techniques, the study reviews 1,761 articles on SOC estimation using RS technologies and 490 articles on SOC employing both RS and ML technologies. Results and Discussion The results indicate that satellite-based RS, particularly the Landsat series, is predominant for estimation of SOC and other associated studies, with North America, China, and Europe leading in evaluations with Africa is having low evaluations adopting RS technology. Trends in the research demonstrate an evolution from basic mapping to advanced topics such as carbon (C) sequestration, complex modeling, and big data utilization. Thematic clusters from co-occurrence analysis suggest the interplay between technology development, environmental surveys, soil properties, and climate dynamics. Conclusion The study highlights the synergy between RS and ML, with advanced ML techniques proving to be critical for accurate SOC estimation. These findings are crucial for comprehensive ecosystem SOC estimation, informed environmental management and strategic decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助岛err采纳,获得30
1秒前
1秒前
2秒前
SciGPT应助小小邱采纳,获得10
2秒前
4秒前
5秒前
Leukocyte完成签到 ,获得积分10
8秒前
可爱的函函应助summer采纳,获得10
8秒前
8秒前
9秒前
55555发布了新的文献求助10
9秒前
小小邱完成签到,获得积分10
9秒前
一二发布了新的文献求助10
10秒前
南笙完成签到,获得积分10
11秒前
Ali完成签到,获得积分10
11秒前
11秒前
Orange应助萨尔莫斯采纳,获得10
11秒前
谦如完成签到 ,获得积分10
11秒前
赘婿应助neinei778采纳,获得10
12秒前
12秒前
只想学习发布了新的文献求助10
13秒前
光亮诗桃完成签到,获得积分10
13秒前
15秒前
光亮诗桃发布了新的文献求助10
15秒前
Zz完成签到 ,获得积分10
17秒前
李爱国应助泽灵采纳,获得10
17秒前
小西贝完成签到 ,获得积分10
17秒前
19秒前
20秒前
夏远航发布了新的文献求助10
20秒前
szj完成签到,获得积分10
21秒前
脑洞疼应助光亮诗桃采纳,获得10
21秒前
21秒前
Li_C完成签到,获得积分10
21秒前
Gleaming完成签到,获得积分10
21秒前
22秒前
zxt12305313完成签到 ,获得积分10
23秒前
小马甲应助ming采纳,获得10
23秒前
23秒前
杨自强完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292382
求助须知:如何正确求助?哪些是违规求助? 2928703
关于积分的说明 8438278
捐赠科研通 2600816
什么是DOI,文献DOI怎么找? 1419277
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921