亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of the hysteresis model at different excitation amplitudes, biases, and frequencies for giant magnetostrictive materials

磁滞 磁致伸缩 激发 振幅 材料科学 凝聚态物理 声学 物理 光学 磁场 量子力学
作者
Hongbo Yan,Haitao Huang,Jianxin Wang,Jian Huang,Kai Xie
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:73 (22): 228501-228501
标识
DOI:10.7498/aps.73.20241219
摘要

The hysteresis model of giant magnetostrictive materials (GMMs) changes with model parameters: the excitation amplitude, bias condition and excitation frequency. The existing hysteresis model is unable to predict the effects of simultaneous changes in the three external conditions. In this paper, the hysteresis loss mechanism is explained by using the traditional Jiles-Atherton (J-A) dynamic model, and the relation equation is established according to the operating conditions and material properties to respond to the changes of external conditions. For the J-A model, the relationship equation related to the excitation amplitude is established, and the relationship equation relating the residual loss coefficient to the excitation amplitude and the bias condition is established for the residual loss, while the eddy current loss of the system is redefined by using the fractional order to obtain the modified hysteresis model. In the paper, the genetic algorithm is used to identify the model parameters of the test data under different operating conditions, and the corresponding correction coefficients are obtained according to the model parameters and the operating conditions. The accuracy of the modified model is verified by simulating the model and analyzing the influences of eddy currents and residual losses and their effects on the model predictions. The hysteresis model is evaluated to compare the hysteresis curves with the hysteresis losses in terms of errors. The results show that the modified model is capable of predicting various excitations with high accuracy, and that neglecting dynamic losses at low frequencies results in large errors. If the model order of the eddy current loss is smaller than the actual order of the material, the predicted hysteresis curve will be contracted inward and the predicted eddy current loss will be small; on the contrary, the predicted hysteresis curve will be expanded outward and the predicted eddy current loss will be large, and with the increase of the excitation frequency, both cases will cause the prediction error to become larger and larger. When the bias magnetic field is zero, the residual loss coefficient is unchanged; when the bias magnetic field is kept constant, the excitation amplitude increases and the residual loss coefficient decreases; when the excitation amplitude is unchanged, the bias magnetic field increases and the residual loss coefficient also increases. When both the bias magnetic field and the excitation amplitude change at the same time, it is necessary to conduct an actual analysis of their corresponding residual loss coefficients. Using hysteresis curves to evaluate hysteresis is more accurate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
搜集达人应助懒回顾采纳,获得10
4秒前
郭郭完成签到 ,获得积分10
5秒前
饼饼大王完成签到,获得积分10
5秒前
pliliyi发布了新的文献求助50
5秒前
5秒前
观澜发布了新的文献求助10
7秒前
谷雨发布了新的文献求助10
10秒前
王波完成签到 ,获得积分10
12秒前
RE完成签到 ,获得积分10
13秒前
14秒前
14秒前
18秒前
19秒前
19秒前
星辰大海应助121231233采纳,获得10
20秒前
23秒前
王哈哈发布了新的文献求助10
23秒前
谢小强发布了新的文献求助10
27秒前
科研q完成签到 ,获得积分10
29秒前
王哈哈完成签到,获得积分10
35秒前
满意的又蓝完成签到,获得积分10
39秒前
41秒前
41秒前
44秒前
雨田发布了新的文献求助10
46秒前
共享精神应助小线团黑桃采纳,获得10
47秒前
50秒前
53秒前
121231233发布了新的文献求助10
56秒前
57秒前
哎哟完成签到,获得积分10
58秒前
张笑圣发布了新的文献求助10
1分钟前
年少丶完成签到,获得积分10
1分钟前
满意的柏柳完成签到 ,获得积分10
1分钟前
田様应助lhyxz采纳,获得10
1分钟前
科yt完成签到,获得积分10
1分钟前
嘟嘟雯完成签到 ,获得积分10
1分钟前
科研修沟完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606532
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866603
捐赠科研通 4706434
什么是DOI,文献DOI怎么找? 2542743
邀请新用户注册赠送积分活动 1508159
关于科研通互助平台的介绍 1472276