A Novel Fuzzy Best-Worst Multicriteria Decision-Making Method Based on the Dual Interval Algorithm for Environmental Decision Support Systems

对偶(语法数字) 区间(图论) 模糊逻辑 计算机科学 决策支持系统 算法 数据挖掘 数学优化 数学 人工智能 艺术 文学类 组合数学
作者
Yi Cheng,Ling Jin,Hongyong Fu,Yurui Fan,R. L. Bai,Yi Wei
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
标识
DOI:10.3808/jei.202400523
摘要

Considering the double uncertainty caused by the ambiguity of statistical data and the ambiguity produced by the subjective assessment of decision makers, the crisp values of criteria may be insufficient to model the multi-criteria decision-making (MCDM) problem in the real world. This paper proposes a fuzzy best-worst method (FBWM) based on a dual-interval solution algorithm to extend the best-worst method (the most recent MCDM method) to fuzzy environments. The reference comparisons for the best criteria and for the worst criteria are represented by fuzzy numbers. Then, according to the BWM method, a nonlinear constrained optimization problem with fuzzy parameters is formulated. We decompose the membership function in fuzzy numbers into several interval numbers of special form and solve the aforementioned fuzzy BWM problem by compound interval algorithm to obtain fuzzy weights of different criteria. Meanwhile, an integral type-reduced method is proposed for determining the fuzzy consistency ratio in order to assess the reliability of the FBWM results. The viability of the new algorithm to expand the BWM method into fuzzy environments has been validated through three numerical examples. In contrast to the existing FBWM method, the proposed method avoids the arithmetic operation between fuzzy numbers during the solution process, directly transfers the uncertain information in the membership function corresponding to the fuzzy comparison vector to the result, and generates fuzzy weight value, which indicates that the proposed algorithm is able to obtain accurate BWM results in fuzzy environments. The results of the study provide new solution ideas for multi-criteria optimization problems under uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pathway发布了新的文献求助10
3秒前
3秒前
jdio完成签到,获得积分10
3秒前
3秒前
小文殊完成签到 ,获得积分10
4秒前
桐桐应助安乐采纳,获得10
4秒前
Artin发布了新的文献求助200
5秒前
wromance完成签到,获得积分10
6秒前
6秒前
7秒前
我要发文章完成签到,获得积分10
9秒前
9秒前
10秒前
爆米花应助风中的小蜜蜂采纳,获得10
10秒前
10秒前
高..完成签到,获得积分10
11秒前
wang完成签到,获得积分20
13秒前
13秒前
丢丢发布了新的文献求助30
15秒前
高..发布了新的文献求助10
15秒前
茉莉园完成签到,获得积分10
15秒前
华仔应助DW采纳,获得10
15秒前
16秒前
volvoamg发布了新的文献求助10
16秒前
Ran关注了科研通微信公众号
17秒前
18秒前
凉城予梦完成签到,获得积分10
18秒前
20秒前
orixero应助xiaozhuzhu采纳,获得10
21秒前
21秒前
23秒前
24秒前
oceanao应助Captain采纳,获得10
24秒前
Rain发布了新的文献求助10
25秒前
lily发布了新的文献求助10
27秒前
慕青应助薛妖怪采纳,获得10
27秒前
29秒前
嗯哼应助Rain采纳,获得10
29秒前
丢丢完成签到,获得积分10
29秒前
善学以致用应助安静静槐采纳,获得10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112