材料科学
激光器
超短脉冲
飞秒
激光烧蚀
光电子学
波长
光学
等离子体子
纳米技术
物理
作者
Hanxuan Huang,Shijie Song,Yun Liu,Zhenyu Liu,Zifeng Xiao,Yanyang Li,Yi Wang,Ruifan Li,Qianru Zhao,Xudong Wang,Yu Chen,Lei Wang,Zhishan Hou,Peilei Zhang,Yun‐Lu Sun
标识
DOI:10.1002/adma.202405766
摘要
Abstract The ultrafast‐laser‐matter interactions enable “top‐down” laser surface structuring, especially for materials difficult to process, with “bottom‐up” self‐organizing features. The subwavelength scenarios of laser‐induced structuring are improved in defects and long‐range order by applying positive/negative feedbacks. It is still hardly reported for supra‐wavelength laser structuring more associated with complicated thermo/hydro‐dynamics. For the first time to the knowledge, the near‐field‐regulated ultrafast‐laser lithography of self‐arrayed supra‐wavelength micro/nano‐pores directly on ultra‐hard metallic glass is developed here. The plasmonic hot spots on pre‐structures, as the positive feedback, clamped the lateral geometries (i.e., position, size). Simultaneously, it drilled and self‐organized into micro/nano‐pore arrays by photo‐dynamic plasma ablation and Marangoni removal confined under specific femtosecond‐laser irradiation, as the negative feedback. The mechanisms and finite element modeling of the multi‐physical transduction (based on the two‐temperature model), the far‐field/near‐field coupling, and the polarization dependence during laser‐matter interactions are studied. Large‐area micro/nano‐pore arrays (centimeter scale or larger) are manufactured with tunable periods (1–5 µm) and geometries (e.g., diameters of 500 nm–6 µm using 343, 515, and 1030 lasers, respectively). Consequently, the mid/far‐infrared reflectivity at 2.5–6.5 µm iss decreased from ≈80% to ≈5%. The universality of multi‐physical coupling and near‐field enhancements makes this approach widely applicable, or even irreplaceable, in various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI