Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy

计算机科学 目标检测 人工智能 温室 过程(计算) 计算机视觉 自动化 模式识别(心理学) 工程类 机械工程 园艺 操作系统 生物
作者
Xiangyang Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15: 1451018-1451018 被引量:18
标识
DOI:10.3389/fpls.2024.1451018
摘要

Introduction Efficiently and precisely identifying tomatoes amidst intricate surroundings is essential for advancing the automation of tomato harvesting. Current object detection algorithms are slow and have low recognition accuracy for occluded and small tomatoes. Methods To enhance the detection of tomatoes in complex environments, a lightweight greenhouse tomato object detection model named S-YOLO is proposed, based on YOLOv8s with several key improvements: (1) A lightweight GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed, significantly reducing model parameters to optimize the model neck for lightweight model acquisition. (2) An improved version of the α-SimSPPF structure was designed, effectively enhancing the detection accuracy of tomatoes. (3) An enhanced version of the β-SIoU algorithm was proposed to optimize the training process and improve the accuracy of overlapping tomato recognition. (4) The SE attention module is integrated to enable the model to capture more representative greenhouse tomato features, thereby enhancing detection accuracy. Results Experimental results demonstrate that the enhanced S-YOLO model significantly improves detection accuracy, achieves lightweight model design, and exhibits fast detection speeds. Experimental results demonstrate that the S-YOLO model significantly enhances detection accuracy, achieving 96.60% accuracy, 92.46% average precision (mAP), and a detection speed of 74.05 FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over the original model. With model parameters at only 9.11M, the S-YOLO outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of occluded and small tomatoes. Discussion The lightweight characteristics of the S-YOLO model make it suitable for the visual system of tomato-picking robots, providing technical support for robot target recognition and harvesting operations in facility environments based on mobile edge computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观乘云完成签到,获得积分20
1秒前
焦焦发布了新的文献求助80
1秒前
小江不饿发布了新的文献求助10
2秒前
crx发布了新的文献求助10
2秒前
3秒前
小迪完成签到,获得积分10
4秒前
我是老大应助OnlyHarbour采纳,获得10
6秒前
zh_li完成签到,获得积分10
7秒前
cheng完成签到,获得积分10
7秒前
7秒前
NN应助李7采纳,获得20
7秒前
8秒前
pp完成签到,获得积分10
9秒前
浮游应助壮观乘云采纳,获得10
9秒前
jun完成签到 ,获得积分10
9秒前
9秒前
9秒前
嗯嗯应助王之争霸采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
海南发布了新的文献求助10
12秒前
晨晨发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
缓慢尔岚发布了新的文献求助10
14秒前
善良随阴完成签到,获得积分10
14秒前
14秒前
14秒前
奶白的雪子完成签到,获得积分10
14秒前
星辰大海应助阿依咕噜采纳,获得10
16秒前
香蕉觅云应助DG采纳,获得10
16秒前
睡觉了完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Y_Y完成签到,获得积分10
17秒前
zorro3574发布了新的文献求助10
17秒前
17秒前
17秒前
嘿嘿完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131