Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy

计算机科学 目标检测 人工智能 温室 过程(计算) 计算机视觉 自动化 模式识别(心理学) 工程类 机械工程 园艺 操作系统 生物
作者
Xiangyang Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:3
标识
DOI:10.3389/fpls.2024.1451018
摘要

Introduction Efficiently and precisely identifying tomatoes amidst intricate surroundings is essential for advancing the automation of tomato harvesting. Current object detection algorithms are slow and have low recognition accuracy for occluded and small tomatoes. Methods To enhance the detection of tomatoes in complex environments, a lightweight greenhouse tomato object detection model named S-YOLO is proposed, based on YOLOv8s with several key improvements: (1) A lightweight GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed, significantly reducing model parameters to optimize the model neck for lightweight model acquisition. (2) An improved version of the α-SimSPPF structure was designed, effectively enhancing the detection accuracy of tomatoes. (3) An enhanced version of the β-SIoU algorithm was proposed to optimize the training process and improve the accuracy of overlapping tomato recognition. (4) The SE attention module is integrated to enable the model to capture more representative greenhouse tomato features, thereby enhancing detection accuracy. Results Experimental results demonstrate that the enhanced S-YOLO model significantly improves detection accuracy, achieves lightweight model design, and exhibits fast detection speeds. Experimental results demonstrate that the S-YOLO model significantly enhances detection accuracy, achieving 96.60% accuracy, 92.46% average precision (mAP), and a detection speed of 74.05 FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over the original model. With model parameters at only 9.11M, the S-YOLO outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of occluded and small tomatoes. Discussion The lightweight characteristics of the S-YOLO model make it suitable for the visual system of tomato-picking robots, providing technical support for robot target recognition and harvesting operations in facility environments based on mobile edge computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助liuguohua126采纳,获得10
刚刚
云儿完成签到,获得积分10
1秒前
宝儿柯察金完成签到,获得积分10
2秒前
fantexi113完成签到,获得积分0
3秒前
bofu发布了新的文献求助30
4秒前
Genius完成签到,获得积分10
4秒前
梅花易数完成签到,获得积分10
4秒前
汉堡包应助qx采纳,获得10
4秒前
欢呼的傲旋完成签到,获得积分10
5秒前
6秒前
Jasper应助JG采纳,获得10
7秒前
7秒前
李爱国应助青衫采纳,获得10
7秒前
柯一一应助xiaolan采纳,获得10
7秒前
开心的访云完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
bofu发布了新的文献求助10
10秒前
大力翠丝完成签到,获得积分10
12秒前
13秒前
13秒前
Haiyang发布了新的文献求助10
13秒前
Ava应助DC采纳,获得10
13秒前
任寒松发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
典雅以南发布了新的文献求助10
16秒前
xuan发布了新的文献求助10
16秒前
小马甲应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
慕青应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089