Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy

计算机科学 目标检测 人工智能 温室 过程(计算) 计算机视觉 自动化 模式识别(心理学) 工程类 机械工程 园艺 操作系统 生物
作者
Xiangyang Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:2
标识
DOI:10.3389/fpls.2024.1451018
摘要

Introduction Efficiently and precisely identifying tomatoes amidst intricate surroundings is essential for advancing the automation of tomato harvesting. Current object detection algorithms are slow and have low recognition accuracy for occluded and small tomatoes. Methods To enhance the detection of tomatoes in complex environments, a lightweight greenhouse tomato object detection model named S-YOLO is proposed, based on YOLOv8s with several key improvements: (1) A lightweight GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed, significantly reducing model parameters to optimize the model neck for lightweight model acquisition. (2) An improved version of the α-SimSPPF structure was designed, effectively enhancing the detection accuracy of tomatoes. (3) An enhanced version of the β-SIoU algorithm was proposed to optimize the training process and improve the accuracy of overlapping tomato recognition. (4) The SE attention module is integrated to enable the model to capture more representative greenhouse tomato features, thereby enhancing detection accuracy. Results Experimental results demonstrate that the enhanced S-YOLO model significantly improves detection accuracy, achieves lightweight model design, and exhibits fast detection speeds. Experimental results demonstrate that the S-YOLO model significantly enhances detection accuracy, achieving 96.60% accuracy, 92.46% average precision (mAP), and a detection speed of 74.05 FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over the original model. With model parameters at only 9.11M, the S-YOLO outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of occluded and small tomatoes. Discussion The lightweight characteristics of the S-YOLO model make it suitable for the visual system of tomato-picking robots, providing technical support for robot target recognition and harvesting operations in facility environments based on mobile edge computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zjy采纳,获得30
刚刚
maying0318发布了新的文献求助10
刚刚
yyc666发布了新的文献求助10
刚刚
Green发布了新的文献求助10
1秒前
萤火完成签到,获得积分10
1秒前
1秒前
2秒前
343727237@qq.com完成签到,获得积分10
2秒前
一朵云完成签到,获得积分10
4秒前
CN完成签到,获得积分10
6秒前
6秒前
kou发布了新的文献求助10
6秒前
感人的心发布了新的文献求助10
6秒前
6秒前
7秒前
fxx发布了新的文献求助10
7秒前
8秒前
8秒前
曾经小虾米应助yyc666采纳,获得10
8秒前
结语完成签到,获得积分10
9秒前
9秒前
uwasa发布了新的文献求助10
10秒前
须野发布了新的文献求助10
10秒前
10秒前
明珠完成签到,获得积分10
10秒前
徐小球球球完成签到,获得积分10
10秒前
10秒前
11秒前
cyh413134发布了新的文献求助10
11秒前
11秒前
summer完成签到,获得积分10
12秒前
JamesPei应助自信的松鼠采纳,获得10
12秒前
奔铂儿钯发布了新的文献求助10
12秒前
欢喜完成签到,获得积分20
13秒前
星河梦枕发布了新的文献求助10
13秒前
太叔明辉发布了新的文献求助10
13秒前
14秒前
英姑应助cici采纳,获得20
14秒前
Marine完成签到,获得积分20
14秒前
崽崽完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258962
求助须知:如何正确求助?哪些是违规求助? 2900627
关于积分的说明 8311796
捐赠科研通 2569955
什么是DOI,文献DOI怎么找? 1396075
科研通“疑难数据库(出版商)”最低求助积分说明 653416
邀请新用户注册赠送积分活动 631356