Enhanced tomato detection in greenhouse environments: a lightweight model based on S-YOLO with high accuracy

计算机科学 目标检测 人工智能 温室 过程(计算) 计算机视觉 自动化 模式识别(心理学) 工程类 机械工程 园艺 操作系统 生物
作者
Xiangyang Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15: 1451018-1451018 被引量:18
标识
DOI:10.3389/fpls.2024.1451018
摘要

Introduction Efficiently and precisely identifying tomatoes amidst intricate surroundings is essential for advancing the automation of tomato harvesting. Current object detection algorithms are slow and have low recognition accuracy for occluded and small tomatoes. Methods To enhance the detection of tomatoes in complex environments, a lightweight greenhouse tomato object detection model named S-YOLO is proposed, based on YOLOv8s with several key improvements: (1) A lightweight GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed, significantly reducing model parameters to optimize the model neck for lightweight model acquisition. (2) An improved version of the α-SimSPPF structure was designed, effectively enhancing the detection accuracy of tomatoes. (3) An enhanced version of the β-SIoU algorithm was proposed to optimize the training process and improve the accuracy of overlapping tomato recognition. (4) The SE attention module is integrated to enable the model to capture more representative greenhouse tomato features, thereby enhancing detection accuracy. Results Experimental results demonstrate that the enhanced S-YOLO model significantly improves detection accuracy, achieves lightweight model design, and exhibits fast detection speeds. Experimental results demonstrate that the S-YOLO model significantly enhances detection accuracy, achieving 96.60% accuracy, 92.46% average precision (mAP), and a detection speed of 74.05 FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over the original model. With model parameters at only 9.11M, the S-YOLO outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of occluded and small tomatoes. Discussion The lightweight characteristics of the S-YOLO model make it suitable for the visual system of tomato-picking robots, providing technical support for robot target recognition and harvesting operations in facility environments based on mobile edge computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助lizhijign采纳,获得10
刚刚
Ronalsen完成签到 ,获得积分10
1秒前
聪慧的乐驹完成签到,获得积分10
1秒前
2秒前
净净岛发布了新的文献求助10
2秒前
米琪完成签到,获得积分10
2秒前
2秒前
大导师发布了新的文献求助10
3秒前
mm完成签到 ,获得积分10
3秒前
3秒前
5秒前
阿艺完成签到,获得积分10
5秒前
勤恳的隶完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
核桃发布了新的文献求助10
7秒前
丢丢第发布了新的文献求助10
8秒前
nn完成签到,获得积分10
8秒前
苗条的嫣完成签到,获得积分10
8秒前
9秒前
9秒前
Owen应助shinn采纳,获得10
9秒前
9秒前
anan发布了新的文献求助10
10秒前
珈蓝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
顾矜应助江汛采纳,获得10
14秒前
14秒前
陆驳发布了新的文献求助10
14秒前
sarah完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
英姑应助整齐翠安采纳,获得10
17秒前
不狗不吹发布了新的文献求助10
19秒前
勿忘发布了新的文献求助10
19秒前
张佳宁发布了新的文献求助10
19秒前
20秒前
无极微光应助江汛采纳,获得20
21秒前
铯氰的蚁人完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778724
求助须知:如何正确求助?哪些是违规求助? 5643441
关于积分的说明 15450266
捐赠科研通 4910269
什么是DOI,文献DOI怎么找? 2642586
邀请新用户注册赠送积分活动 1590334
关于科研通互助平台的介绍 1544675