A Data-driven Exploration and Prediction of Deep Brain Stimulation Effects on Gait in Parkinson's Disease

脑深部刺激 帕金森病 丘脑底核 步态 物理医学与康复 步态分析 轮廓 支持向量机 人工智能 心理学 计算机科学 医学 机器学习 疾病 内科学
作者
Gianluca Amprimo,Zhongke Mei,Claudia Ferraris,Gabriella Olmo,Deepak K. Ravi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3446548
摘要

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment for motor impairment due to Parkinson's disease (PD) progression. While treated subjects mostly experience significant amelioration of symptoms, some still report adverse effects. In particular, changes in gait patterns due to the electrical stimulation have shown mixed results across studies, with overall gait velocity improvement described as the core positive outcome. This retrospective study investigates changes in the gait parameters of 50 PD patients before and 6 months after STN-DBS, by exploiting a purely data-driven approach. First, unsupervised learning identifies clusters of subjects with similar variations in the gait parameters after STN-DBS. This analysis highlights two dominant clusters (Silhouette score: 0.45, Dunn index: 0.18), with one of them associated to a worsening in walking. Then, supervised machine learning models (i.e., Support Vector Machine and Ensemble Boosting models) are trained using pre-surgery gait parameters, clinical scores, and demographic information to predict the two gait change clusters. In a Leave-One-Subject-Out validation, the best model achieves balanced accuracy 80.05 ± 3.52 %, denoting moderate predictability of both clusters. Moreover, feature importance analysis reveals the variability in the step width and in the step length asymmetry during the preoperative gait test as promising biomarkers to predict gait response to STN-DBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助荒野星辰采纳,获得10
1秒前
1秒前
YHY完成签到,获得积分10
3秒前
科研通AI5应助魏伯安采纳,获得10
3秒前
caoyy发布了新的文献求助10
3秒前
4秒前
5秒前
张喻235532完成签到,获得积分10
6秒前
失眠虔纹发布了新的文献求助10
7秒前
香蕉觅云应助糊涂的小伙采纳,获得10
7秒前
7秒前
sutharsons应助科研通管家采纳,获得200
9秒前
打打应助科研通管家采纳,获得10
9秒前
axin应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
lu应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
研友_MLJldZ发布了新的文献求助10
10秒前
wys完成签到 ,获得积分10
11秒前
12秒前
michaelvin完成签到,获得积分10
12秒前
学术大白完成签到 ,获得积分10
15秒前
15秒前
SYT完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
19秒前
20秒前
20秒前
魏伯安发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849