空化
催化作用
消散
材料科学
化学物理
粒子(生态学)
气泡
密度泛函理论
氧化物
分子
分解
纳米技术
多相催化
化学工程
工作(物理)
氧化铜
光化学
化学
机械
热力学
计算化学
有机化学
物理
冶金
海洋学
工程类
地质学
作者
Prince Nana Amaniampong,Valarmathi Mahendran,Quang Thang Trịnh,Xie Zhangyue,Umesh S. Jonnalagadda,Tim Gould,Nam‐Trung Nguyen,James Kwan,Tej S. Choksi,Wen Liu,Sabine Valange,François Jérôme
标识
DOI:10.1002/anie.202416543
摘要
Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360°C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H2O2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI