Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫搭完成签到,获得积分10
刚刚
烧瓶杀手发布了新的文献求助10
1秒前
之以发布了新的文献求助10
1秒前
姜惠完成签到,获得积分10
1秒前
whisper发布了新的文献求助10
1秒前
1秒前
Crystal完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
核桃应助曾经的碧萱采纳,获得10
3秒前
Lny完成签到,获得积分0
3秒前
3秒前
宁静致远完成签到,获得积分10
4秒前
吴大宝完成签到,获得积分10
4秒前
4秒前
神锋天下完成签到,获得积分10
5秒前
无花果应助鑫搭采纳,获得10
5秒前
azusa完成签到,获得积分10
5秒前
波比冰苏打完成签到,获得积分10
5秒前
Diane完成签到,获得积分10
5秒前
酷酷的安柏完成签到 ,获得积分10
6秒前
烧瓶杀手完成签到,获得积分10
7秒前
7秒前
专注雁芙发布了新的文献求助10
7秒前
砍柴少年发布了新的文献求助10
7秒前
英勇孤丹完成签到 ,获得积分10
8秒前
8秒前
8秒前
大模型应助无限的依波采纳,获得10
8秒前
苏七完成签到,获得积分10
8秒前
忧郁的风华完成签到,获得积分10
8秒前
标致冬日发布了新的文献求助10
8秒前
文艺雁菱完成签到,获得积分10
9秒前
CINDERICE完成签到,获得积分10
10秒前
才露尖尖角完成签到,获得积分10
10秒前
研友_VZG7GZ应助曾经不言采纳,获得10
11秒前
916应助Crystal采纳,获得10
11秒前
ztt发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855