Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿七完成签到,获得积分20
1秒前
1秒前
呼啦啦完成签到 ,获得积分10
1秒前
2秒前
大哈鱼完成签到,获得积分20
2秒前
emmm发布了新的文献求助10
2秒前
2秒前
党阳阳完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
我真找不到完成签到,获得积分0
4秒前
活力书包完成签到 ,获得积分10
4秒前
白云完成签到,获得积分10
4秒前
小二郎应助lin采纳,获得10
4秒前
小二郎应助何安采纳,获得10
4秒前
wanci应助Cindy采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
汉堡包应助liuyingjuan829采纳,获得10
6秒前
xuan发布了新的文献求助10
6秒前
拾柒发布了新的文献求助10
6秒前
feli完成签到,获得积分10
7秒前
朱迪完成签到 ,获得积分10
8秒前
英俊的铭应助Jerrie采纳,获得10
8秒前
我爱高数完成签到,获得积分10
9秒前
实验室应助感动澜采纳,获得30
9秒前
Liens发布了新的文献求助10
10秒前
whj发布了新的文献求助10
10秒前
10秒前
孤央完成签到 ,获得积分10
10秒前
10秒前
YY完成签到 ,获得积分10
10秒前
迟山完成签到,获得积分10
10秒前
11秒前
一叶知秋完成签到,获得积分10
11秒前
Lawenced发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836