亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老石完成签到 ,获得积分10
3秒前
5秒前
Yuanyuan发布了新的文献求助10
6秒前
29秒前
朝雪关注了科研通微信公众号
35秒前
Yuanyuan发布了新的文献求助10
36秒前
朝雪完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
arniu2008完成签到,获得积分20
1分钟前
科研通AI6.1应助曾经问雁采纳,获得30
1分钟前
1分钟前
BowieHuang应助arniu2008采纳,获得10
1分钟前
sophy完成签到,获得积分20
1分钟前
在喝咖啡ing完成签到,获得积分10
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
简单发布了新的文献求助20
2分钟前
lovelife完成签到,获得积分10
2分钟前
qsxy发布了新的文献求助100
2分钟前
老老熊完成签到,获得积分10
3分钟前
3分钟前
qsxy完成签到,获得积分10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
小刘小刘发布了新的文献求助80
3分钟前
CodeCraft应助痴情的诗槐采纳,获得10
3分钟前
简单完成签到,获得积分20
3分钟前
小马甲应助小刘小刘采纳,获得10
3分钟前
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
4分钟前
Re完成签到 ,获得积分10
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666