Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yjwang发布了新的文献求助150
刚刚
2秒前
3秒前
加菲发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
wang完成签到 ,获得积分10
5秒前
6秒前
spencer177完成签到,获得积分10
6秒前
7秒前
今后应助小苗采纳,获得10
7秒前
凯里欧文发布了新的文献求助10
7秒前
7秒前
缓慢的百川完成签到,获得积分20
8秒前
8秒前
转身在街角完成签到,获得积分10
10秒前
Jonathan应助小宝妈采纳,获得10
10秒前
10秒前
852应助子冈几号采纳,获得10
11秒前
愉快雪兰发布了新的文献求助10
11秒前
11秒前
BPX发布了新的文献求助10
12秒前
12秒前
12秒前
赘婿应助李振华采纳,获得10
12秒前
FashionBoy应助apple810采纳,获得10
13秒前
好大白关注了科研通微信公众号
13秒前
体贴的一笑完成签到,获得积分20
13秒前
共享精神应助勤奋牛排采纳,获得10
13秒前
lewis发布了新的文献求助10
15秒前
jingjing发布了新的文献求助10
16秒前
16秒前
欢喜醉香发布了新的文献求助10
17秒前
duwei完成签到,获得积分20
17秒前
Lucas应助体贴的一笑采纳,获得10
18秒前
FashionBoy应助likes采纳,获得30
19秒前
2339346348完成签到,获得积分20
19秒前
叶子发布了新的文献求助10
20秒前
加菲完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718207
捐赠科研通 2429101
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220