Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iboy完成签到,获得积分10
1秒前
冷傲凝琴完成签到,获得积分10
1秒前
嘻嗷完成签到,获得积分10
1秒前
外星人发布了新的文献求助10
2秒前
任性的诗兰完成签到,获得积分10
2秒前
turui完成签到 ,获得积分10
3秒前
南星完成签到 ,获得积分10
3秒前
SCI完成签到,获得积分10
3秒前
畅快慕蕊完成签到,获得积分10
3秒前
mzhang2完成签到 ,获得积分10
3秒前
南宫若翠完成签到 ,获得积分10
4秒前
发发旦旦完成签到,获得积分10
5秒前
5秒前
光亮萤完成签到,获得积分10
6秒前
xingyi完成签到,获得积分10
6秒前
zoe完成签到,获得积分10
8秒前
9秒前
诸葛高澜完成签到,获得积分10
10秒前
鳗鱼不尤完成签到,获得积分10
11秒前
LL完成签到,获得积分10
12秒前
Shirley完成签到,获得积分10
12秒前
kylin发布了新的文献求助10
12秒前
Liziqi823完成签到,获得积分10
13秒前
小太阳完成签到,获得积分10
13秒前
技术的不能发表完成签到 ,获得积分10
14秒前
15秒前
卡卡完成签到 ,获得积分10
15秒前
浮游应助丙队长采纳,获得10
16秒前
Aoia完成签到,获得积分10
17秒前
Hi完成签到,获得积分10
17秒前
kong完成签到,获得积分10
17秒前
左西完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
JFy完成签到 ,获得积分10
18秒前
怡然安南完成签到 ,获得积分10
20秒前
沫柠完成签到 ,获得积分10
21秒前
卡其嘛亮完成签到,获得积分10
22秒前
十五完成签到,获得积分10
22秒前
华仔应助东山采纳,获得10
23秒前
老猫头鹰完成签到,获得积分10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882