Fabric Defect Detection Method Based on Multi-scale Fusion Attention Mechanisms

比例(比率) 融合 计算机科学 人工智能 材料科学 物理 哲学 语言学 量子力学
作者
Canfeng Liu,Hongyan Zou,Peng Lv,R. Y. Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6501/ad8be7
摘要

Abstract Fabric defect detection is extremely important for the development of the textile industry, but the existing traditional image processing algorithms are not good enough to detect fabric defects, and the detection efficiency and accuracy of the classical deep learning model is not satisfactory, so this paper proposes an improved fabric defect detection method based on multi-scale fusion of attention mechanism YOLOv7-PCBS. Based on the YOLOv7 network structure, some of the standard convolutions of the backbone network are replaced with Partial Convolution (PConv) modules, which reduces the amount of network computation and improves the network detection speed; add Coordinate Attention (CA) to enhance the ability of extracting the positional features of tiny defects in fabrics; reconfiguration of the SPPCSPC module to improve small target detection; optimization of Bidirectional Feature Pyramid Network (BiFPN) and design of Tiny- BiFPN for simple and fast multi-scale feature fusion; finally, a novel loss function SIoU with angular loss is introduced to facilitate the fitting of the true and predicted frames and enhance the accuracy of defect prediction. The results show that the algorithm achieves a mAP value of 94.4% on the detection of defects in solid-colored fabrics of six denim materials, which is an improvement of 15.1% compared to the original YOLOv7 algorithm, while the model achieves a frame rate of 59.5 per second. Compared with other traditional deep learning algorithms SSD and Faster-RCNN, the detection accuracies are improved by 21.6% and 15.2%, and the FPS values are improved by 78.1% and 101.0%, respectively. Therefore, the YOLOv7-PCBS fabric defect detection algorithm proposed in this paper makes the fabric defect detection results more accurate while realizing lightweight, which provides an important technical reference for the subsequent improvement of textile quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
1秒前
努力科研发布了新的文献求助10
1秒前
糊涂的疾完成签到 ,获得积分10
2秒前
健忘的夜阑完成签到,获得积分10
3秒前
杨皓婷完成签到,获得积分10
4秒前
天才J完成签到,获得积分10
4秒前
5秒前
鱼缸换水晶完成签到 ,获得积分10
5秒前
七海之风发布了新的文献求助10
5秒前
9秒前
无花果应助杨皓婷采纳,获得10
9秒前
最最最发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
Baiyu发布了新的文献求助10
13秒前
奋斗的绝悟完成签到,获得积分10
13秒前
13秒前
14秒前
霸气的冰旋完成签到,获得积分10
14秒前
heilong发布了新的文献求助10
14秒前
星辰大海应助大意的语琴采纳,获得100
16秒前
四季刻歌完成签到,获得积分10
16秒前
丘比特应助wwwanfg采纳,获得10
17秒前
发发完成签到 ,获得积分10
17秒前
17秒前
19秒前
wxt完成签到,获得积分10
20秒前
sw发布了新的文献求助10
20秒前
Olivia雪雪完成签到 ,获得积分10
20秒前
最最最完成签到,获得积分20
21秒前
搜集达人应助乐仔采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
LJQ发布了新的文献求助10
23秒前
yyq617569158完成签到,获得积分20
25秒前
liu发布了新的文献求助10
25秒前
heilong完成签到,获得积分10
27秒前
29秒前
30秒前
赘婿应助liu采纳,获得10
33秒前
zcs完成签到,获得积分10
33秒前
拾起完成签到,获得积分10
33秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355