Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助风趣的天奇采纳,获得10
刚刚
momo关注了科研通微信公众号
1秒前
ding应助元正采纳,获得10
2秒前
不过尔尔发布了新的文献求助10
2秒前
迷失的悠悠完成签到,获得积分10
2秒前
水蔓菁发布了新的文献求助30
3秒前
蒋复天发布了新的文献求助10
3秒前
sunshine发布了新的文献求助10
4秒前
xxx完成签到,获得积分10
4秒前
kkkkki完成签到,获得积分10
4秒前
gan发布了新的文献求助10
5秒前
从容的念柏完成签到,获得积分10
5秒前
5秒前
Aaron完成签到 ,获得积分10
5秒前
6秒前
江流石不转完成签到 ,获得积分10
6秒前
在水一方应助lizzy采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
魔芋不爽完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
xiaotong发布了新的文献求助10
10秒前
Paradox完成签到,获得积分10
11秒前
马户牙发布了新的文献求助10
11秒前
李里哩发布了新的文献求助10
13秒前
pu发布了新的文献求助10
13秒前
arnoan发布了新的文献求助10
13秒前
王敬顺完成签到,获得积分0
13秒前
犬饲发布了新的文献求助10
13秒前
学术laji发布了新的文献求助10
13秒前
盲点发布了新的文献求助10
14秒前
李健的小迷弟应助wsd采纳,获得10
15秒前
天天快乐应助光亮的元容采纳,获得10
15秒前
斯文123发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049