Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lindadsl完成签到,获得积分10
刚刚
1秒前
1234发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
万能图书馆应助qqqq采纳,获得30
4秒前
微笑爆米花应助自信的采纳,获得10
4秒前
fahbfafajk完成签到,获得积分10
4秒前
追光者发布了新的文献求助10
5秒前
Ann发布了新的文献求助10
5秒前
开心网络完成签到 ,获得积分10
5秒前
左丽君发布了新的文献求助10
5秒前
7秒前
高兴的小完成签到,获得积分10
7秒前
如意2023发布了新的文献求助10
7秒前
8秒前
shutong完成签到,获得积分10
9秒前
霸气乐菱发布了新的文献求助10
9秒前
9秒前
李健的小迷弟应助井子肉采纳,获得10
9秒前
赘婿应助求知采纳,获得10
9秒前
Owen应助Ann采纳,获得10
11秒前
11秒前
烟花应助苦行僧采纳,获得10
11秒前
在水一方应助su采纳,获得10
12秒前
ceeray23应助Dean采纳,获得200
12秒前
我吃小饼干完成签到 ,获得积分10
13秒前
1234完成签到,获得积分10
13秒前
pandaxiaoxi完成签到,获得积分10
13秒前
13秒前
开放的玉米完成签到,获得积分10
13秒前
14秒前
yurunxintian完成签到,获得积分10
14秒前
gqq发布了新的文献求助10
15秒前
15秒前
脑洞疼应助zhang采纳,获得10
16秒前
ds发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572586
求助须知:如何正确求助?哪些是违规求助? 4658232
关于积分的说明 14721857
捐赠科研通 4598413
什么是DOI,文献DOI怎么找? 2523791
邀请新用户注册赠送积分活动 1494485
关于科研通互助平台的介绍 1464549