清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Polylactic完成签到 ,获得积分10
5秒前
9秒前
害羞的雁易完成签到 ,获得积分10
22秒前
bono完成签到 ,获得积分10
28秒前
32秒前
37秒前
追寻的纸鹤完成签到 ,获得积分10
48秒前
cgs完成签到 ,获得积分10
49秒前
53秒前
huanghe完成签到,获得积分0
55秒前
JamesPei应助敏感的秋凌采纳,获得10
1分钟前
Singularity完成签到,获得积分0
1分钟前
MAOMAO完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
qiongqiong发布了新的文献求助10
2分钟前
毛毛弟完成签到 ,获得积分10
2分钟前
庄海棠完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
gqw3505完成签到,获得积分10
2分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
zs发布了新的文献求助30
3分钟前
活泼学生完成签到 ,获得积分10
3分钟前
智者雨人完成签到 ,获得积分10
3分钟前
ypp完成签到 ,获得积分10
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
滕祥应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
zijingsy完成签到 ,获得积分10
4分钟前
lin123完成签到 ,获得积分10
4分钟前
菲子笑完成签到,获得积分10
4分钟前
王吉萍完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706666
求助须知:如何正确求助?哪些是违规求助? 5176277
关于积分的说明 15247184
捐赠科研通 4860108
什么是DOI,文献DOI怎么找? 2608386
邀请新用户注册赠送积分活动 1559298
关于科研通互助平台的介绍 1517073