亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iman完成签到,获得积分10
3秒前
谨慎的夏完成签到,获得积分10
4秒前
yangzai完成签到 ,获得积分0
10秒前
yttttt发布了新的文献求助10
12秒前
李爱国应助桃子e采纳,获得10
14秒前
cnspower应助开心小诺采纳,获得10
19秒前
彭于晏应助宇文宛菡采纳,获得10
20秒前
七大洋的风完成签到,获得积分10
23秒前
24秒前
喝橙汁儿吗完成签到 ,获得积分10
26秒前
桃子e发布了新的文献求助10
31秒前
Owen应助科研通管家采纳,获得10
38秒前
Owen应助科研通管家采纳,获得10
39秒前
JamesPei应助科研通管家采纳,获得10
39秒前
morena应助科研通管家采纳,获得10
39秒前
Jasper应助科研通管家采纳,获得10
39秒前
39秒前
gjz应助科研通管家采纳,获得10
39秒前
39秒前
45秒前
GlockieZhao完成签到,获得积分10
52秒前
阔达的寒松完成签到,获得积分20
55秒前
慕青应助何书易采纳,获得10
56秒前
56秒前
58秒前
搜集达人应助YH采纳,获得10
1分钟前
1分钟前
寒冷白亦完成签到 ,获得积分10
1分钟前
丁一完成签到,获得积分10
1分钟前
1分钟前
1分钟前
YH发布了新的文献求助10
1分钟前
1分钟前
光合作用完成签到,获得积分10
1分钟前
1分钟前
务实书包完成签到,获得积分10
1分钟前
1分钟前
小马甲应助杨媛采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788218
求助须知:如何正确求助?哪些是违规求助? 5705246
关于积分的说明 15473310
捐赠科研通 4916338
什么是DOI,文献DOI怎么找? 2646295
邀请新用户注册赠送积分活动 1593951
关于科研通互助平台的介绍 1548328