清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠发布了新的文献求助10
1秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
上官若男应助ykssss采纳,获得10
2分钟前
2分钟前
科研通AI6.1应助悠悠采纳,获得10
3分钟前
李燕伟完成签到 ,获得积分10
3分钟前
3分钟前
悠悠发布了新的文献求助10
3分钟前
英姑应助Ellen采纳,获得30
3分钟前
3分钟前
3分钟前
ykssss发布了新的文献求助10
4分钟前
忘忧Aquarius完成签到,获得积分10
4分钟前
4分钟前
4分钟前
内向的绿应助读书的时候采纳,获得10
4分钟前
5分钟前
hhuajw应助读书的时候采纳,获得10
5分钟前
5分钟前
Ellen发布了新的文献求助30
5分钟前
顾矜应助读书的时候采纳,获得10
6分钟前
潜行者完成签到 ,获得积分10
6分钟前
Alger完成签到,获得积分10
6分钟前
科研通AI6.1应助悠悠采纳,获得10
6分钟前
qq完成签到 ,获得积分10
6分钟前
6分钟前
悠悠完成签到,获得积分20
7分钟前
7分钟前
悠悠发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高挑的白旋风完成签到,获得积分10
7分钟前
8分钟前
阿俊完成签到 ,获得积分10
8分钟前
lydiaabc完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732540
求助须知:如何正确求助?哪些是违规求助? 5340403
关于积分的说明 15322326
捐赠科研通 4878049
什么是DOI,文献DOI怎么找? 2620881
邀请新用户注册赠送积分活动 1570054
关于科研通互助平台的介绍 1526759