Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助dd采纳,获得10
1秒前
汉堡包应助cuihl123采纳,获得10
1秒前
李浓完成签到,获得积分10
1秒前
DreamMaker发布了新的文献求助10
1秒前
mao12wang完成签到,获得积分10
2秒前
2秒前
bdvdsrwteges发布了新的文献求助10
3秒前
如约而至发布了新的文献求助20
3秒前
纯真的莫茗完成签到,获得积分10
3秒前
彭于晏应助超11采纳,获得10
4秒前
4秒前
gavincsu发布了新的文献求助10
4秒前
KSGGS给KSGGS的求助进行了留言
4秒前
flow驳回了Aria应助
4秒前
lixiunan完成签到,获得积分10
4秒前
4秒前
dildil发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
边瑞明完成签到,获得积分10
7秒前
Wang发布了新的文献求助10
8秒前
Jenny应助拼搏思卉采纳,获得10
8秒前
8秒前
神勇的雅香应助不喝可乐采纳,获得10
8秒前
清脆的白开水完成签到,获得积分10
8秒前
Hello应助善良过客采纳,获得10
8秒前
现实的曼荷完成签到,获得积分10
8秒前
8秒前
9秒前
zyyyy完成签到,获得积分10
9秒前
dd完成签到,获得积分20
9秒前
9秒前
混子发布了新的文献求助10
9秒前
HYG完成签到,获得积分10
10秒前
二橦完成签到 ,获得积分10
10秒前
熊博士完成签到,获得积分10
11秒前
哲000发布了新的文献求助10
11秒前
丰富的世界完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759