已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anatomy-constrained synthesis for spleen segmentation improvement in unpaired mouse micro-CT scans with 3D CycleGAN

分割 人工智能 计算机科学 杠杆(统计) 模式识别(心理学) 对比度(视觉) 豪斯多夫距离 基本事实 计算机视觉
作者
Lu Jiang,Di Xu,Ke Sheng
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (5): 055019-055019
标识
DOI:10.1088/2057-1976/ad6a63
摘要

Abstract Objective . Auto-segmentation in mouse micro-CT enhances the efficiency and consistency of preclinical experiments but often struggles with low-native-contrast and morphologically complex organs, such as the spleen, resulting in poor segmentation performance. While CT contrast agents can improve organ conspicuity, their use complicates experimental protocols and reduces feasibility. We developed a 3D Cycle Generative Adversarial Network (CycleGAN) incorporating anatomy-constrained U-Net models to leverage contrast-enhanced CT (CECT) insights to improve unenhanced native CT (NACT) segmentation. Approach. We employed a standard CycleGAN with an anatomical loss function to synthesize virtual CECT images from unpaired NACT scans at two different resolutions. Prior to training, two U-Nets were trained to automatically segment six major organs in NACT and CECT datasets, respectively. These pretrained 3D U-Nets were integrated during the CycleGAN training, segmenting synthetic images, and comparing them against ground truth annotations. The compound loss within the CycleGAN maintained anatomical fidelity. Full image processing was achieved for low-resolution datasets, while high-resolution datasets employed a patch-based method due to GPU memory constraints. Automated segmentation was applied to original NACT and synthetic CECT scans to evaluate CycleGAN performance using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD 95p ). Main results. High-resolution scans showed improved auto-segmentation, with an average DSC increase from 0.728 to 0.773 and a reduced HD95p from 1.19 mm to 0.94 mm. Low-resolution scans benefited more from synthetic contrast, showing a DSC increase from 0.586 to 0.682 and an HD 95p reduction from 3.46 mm to 1.24 mm. Significance. Implementing CycleGAN to synthesize CECT scans substantially improved the visibility of the mouse spleen, leading to more precise auto-segmentation. This approach shows the potential in preclinical imaging studies where contrast agent use is impractical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinglongtsmc发布了新的文献求助20
1秒前
2秒前
2秒前
2秒前
yaoyaoyu完成签到 ,获得积分10
3秒前
烟花应助蓝色逍遥鱼采纳,获得10
4秒前
zy完成签到 ,获得积分10
4秒前
李健的小迷弟应助阿宇采纳,获得10
5秒前
6秒前
6秒前
fantianhui完成签到 ,获得积分10
6秒前
精明玲完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
weiwei发布了新的文献求助30
8秒前
脑洞疼应助hantuo采纳,获得10
8秒前
蛋泥完成签到,获得积分10
9秒前
10秒前
腰突患者的科研完成签到,获得积分10
10秒前
11秒前
13秒前
zzz完成签到,获得积分10
13秒前
巩泓辰完成签到,获得积分10
13秒前
Aurora发布了新的文献求助10
14秒前
14秒前
Dou完成签到,获得积分10
15秒前
Fn完成签到 ,获得积分10
15秒前
丘比特应助One采纳,获得10
17秒前
17秒前
hantuo发布了新的文献求助10
19秒前
adkdad完成签到,获得积分10
21秒前
笑笑完成签到 ,获得积分10
21秒前
阿宇发布了新的文献求助10
21秒前
NexusExplorer应助明亮的小凡采纳,获得10
22秒前
今后应助星辉斑斓采纳,获得10
23秒前
汉堡包应助星辉斑斓采纳,获得10
23秒前
上官若男应助Aurora采纳,获得10
23秒前
anz完成签到 ,获得积分10
27秒前
我是老大应助weiwei采纳,获得10
27秒前
souther完成签到,获得积分0
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606459
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866330
捐赠科研通 4705808
什么是DOI,文献DOI怎么找? 2542698
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276