DSnet: a new dual-branch network for hippocampus subfield segmentation

分割 计算机科学 人工智能 卷积神经网络 市场细分 深度学习 海马结构 模式识别(心理学) 人工神经网络 神经科学 生物 营销 业务
作者
Hancan Zhu,Wangang Cheng,Keli Hu,Guanghua He
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66415-0
摘要

The hippocampus is a critical component of the brain and is associated with many neurological disorders. It can be further subdivided into several subfields, and accurate segmentation of these subfields is of great significance for diagnosis and research. However, the structures of hippocampal subfields are irregular and have complex boundaries, and their voxel values are close to surrounding brain tissues, making the segmentation task highly challenging. Currently, many automatic segmentation tools exist for hippocampal subfield segmentation, but they suffer from high time costs and low segmentation accuracy. In this paper, we propose a new dual-branch segmentation network structure (DSnet) based on deep learning for hippocampal subfield segmentation. While traditional convolutional neural network-based methods are effective in capturing hierarchical structures, they struggle to establish long-term dependencies. The DSnet integrates the Transformer architecture and a hybrid attention mechanism, enhancing the network's global perceptual capabilities. Moreover, the dual-branch structure of DSnet leverages the segmentation results of the hippocampal region to facilitate the segmentation of its subfields. We validate the efficacy of our algorithm on the public Kulaga-Yoskovitz dataset. Experimental results indicate that our method is more effective in segmenting hippocampal subfields than conventional single-branch network structures. Compared to the classic 3D U-Net, our proposed DSnet improves the average Dice accuracy of hippocampal subfield segmentation by 0.57%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlz完成签到,获得积分10
1秒前
唐一一完成签到,获得积分10
1秒前
科研通AI5应助睡大觉采纳,获得10
2秒前
2秒前
CodeCraft应助yszm采纳,获得10
3秒前
3秒前
bkagyin应助锦蓁采纳,获得10
4秒前
xlz发布了新的文献求助10
5秒前
基金中中中完成签到,获得积分10
5秒前
8秒前
酷炫的紫完成签到,获得积分20
9秒前
9秒前
等一个晴天完成签到,获得积分10
11秒前
12秒前
13秒前
酷炫的紫发布了新的文献求助30
13秒前
13秒前
风筝发布了新的文献求助10
15秒前
煊陌完成签到 ,获得积分10
15秒前
yszm发布了新的文献求助10
17秒前
Ethan应助鲜艳的棒棒糖采纳,获得20
18秒前
领导范儿应助zr237618采纳,获得10
19秒前
谢志超完成签到,获得积分10
19秒前
21秒前
23秒前
桐桐应助zsz采纳,获得10
23秒前
Hexagram完成签到 ,获得积分10
23秒前
wrjww完成签到,获得积分20
24秒前
鲤鱼不言完成签到,获得积分10
25秒前
28秒前
29秒前
29秒前
昏睡的山柳完成签到 ,获得积分10
30秒前
孙博完成签到,获得积分0
31秒前
大个应助兴奋采梦采纳,获得10
33秒前
zsz发布了新的文献求助10
34秒前
35秒前
NexusExplorer应助鳗鱼三毒采纳,获得10
35秒前
36秒前
vivien发布了新的文献求助10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559794
求助须知:如何正确求助?哪些是违规求助? 3134246
关于积分的说明 9406240
捐赠科研通 2834289
什么是DOI,文献DOI怎么找? 1558019
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522