Algorithmic Trading Using Double Deep Q-Networks and Sentiment Analysis

计算机科学 情绪分析 人工智能
作者
Leon Tabaro,Jean Marie Vianney Kinani,Alberto Rosales,Julio César Salgado-Ramírez,Dante Mújica‐Vargas,Ponciano Jorge Escamilla-Ambrosio,Eduardo Ramos‐Díaz
出处
期刊:Information [MDPI AG]
卷期号:15 (8): 473-473
标识
DOI:10.3390/info15080473
摘要

In this work, we explore the application of deep reinforcement learning (DRL) to algorithmic trading. While algorithmic trading is focused on using computer algorithms to automate a predefined trading strategy, in this work, we train a Double Deep Q-Network (DDQN) agent to learn its own optimal trading policy, with the goal of maximising returns whilst managing risk. In this study, we extended our approach by augmenting the Markov Decision Process (MDP) states with sentiment analysis of financial statements, through which the agent achieved up to a 70% increase in the cumulative reward over the testing period and an increase in the Calmar ratio from 0.9 to 1.3. The experimental results also showed that the DDQN agent’s trading strategy was able to consistently outperform the benchmark set by the buy-and-hold strategy. Additionally, we further investigated the impact of the length of the window of past market data that the agent considers when deciding on the best trading action to take. The results of this study have validated DRL’s ability to find effective solutions and its importance in studying the behaviour of agents in markets. This work serves to provide future researchers with a foundation to develop more advanced and adaptive DRL-based trading systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的傲白完成签到 ,获得积分0
1秒前
2秒前
3秒前
Ambition9发布了新的文献求助10
4秒前
Hello应助金桔儿采纳,获得10
4秒前
5秒前
6秒前
充电宝应助Catherine_Song采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
予秋发布了新的文献求助10
8秒前
杉杉发布了新的文献求助10
9秒前
10秒前
11秒前
李曼婷发布了新的文献求助10
12秒前
科研通AI6应助阿卡米星采纳,获得10
12秒前
快乐绝悟完成签到,获得积分10
13秒前
小牧鱼完成签到,获得积分10
13秒前
萌萌雨发布了新的文献求助10
13秒前
CipherSage应助杉杉采纳,获得30
14秒前
14秒前
大个应助Luke采纳,获得10
15秒前
16秒前
萌萌发布了新的文献求助10
16秒前
16秒前
科研小小白完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
kytm完成签到,获得积分10
17秒前
18秒前
最佳损友塔图姆完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI6应助miles采纳,获得10
20秒前
jieni完成签到,获得积分10
20秒前
May想吃烤肉完成签到,获得积分10
20秒前
yu发布了新的文献求助10
20秒前
李曼婷完成签到,获得积分10
21秒前
英姑应助舒适的新波采纳,获得30
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667892
关于积分的说明 14769849
捐赠科研通 4610340
什么是DOI,文献DOI怎么找? 2529769
邀请新用户注册赠送积分活动 1498755
关于科研通互助平台的介绍 1467307