Algorithmic Trading Using Double Deep Q-Networks and Sentiment Analysis

计算机科学 情绪分析 人工智能
作者
Leon Tabaro,Jean Marie Vianney Kinani,Alberto Rosales,Julio César Salgado-Ramírez,Dante Mújica‐Vargas,Ponciano Jorge Escamilla-Ambrosio,Eduardo Ramos‐Díaz
出处
期刊:Information [MDPI AG]
卷期号:15 (8): 473-473
标识
DOI:10.3390/info15080473
摘要

In this work, we explore the application of deep reinforcement learning (DRL) to algorithmic trading. While algorithmic trading is focused on using computer algorithms to automate a predefined trading strategy, in this work, we train a Double Deep Q-Network (DDQN) agent to learn its own optimal trading policy, with the goal of maximising returns whilst managing risk. In this study, we extended our approach by augmenting the Markov Decision Process (MDP) states with sentiment analysis of financial statements, through which the agent achieved up to a 70% increase in the cumulative reward over the testing period and an increase in the Calmar ratio from 0.9 to 1.3. The experimental results also showed that the DDQN agent’s trading strategy was able to consistently outperform the benchmark set by the buy-and-hold strategy. Additionally, we further investigated the impact of the length of the window of past market data that the agent considers when deciding on the best trading action to take. The results of this study have validated DRL’s ability to find effective solutions and its importance in studying the behaviour of agents in markets. This work serves to provide future researchers with a foundation to develop more advanced and adaptive DRL-based trading systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晁子枫发布了新的文献求助10
1秒前
1秒前
1秒前
夜半芜凉发布了新的文献求助10
2秒前
李健的小迷弟应助sadd采纳,获得10
3秒前
科研白发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
务实的惜寒完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
张志迪发布了新的文献求助10
5秒前
zenzi发布了新的文献求助10
5秒前
随缘来一个吧完成签到 ,获得积分10
5秒前
5秒前
5秒前
和谐碧琴发布了新的文献求助10
6秒前
优雅盼海完成签到,获得积分10
7秒前
7秒前
悟空发布了新的文献求助30
8秒前
Jared应助科研通管家采纳,获得10
8秒前
8秒前
asd应助科研通管家采纳,获得30
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
tiptip应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
zgrmws应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002