Algorithmic Trading Using Double Deep Q-Networks and Sentiment Analysis

计算机科学 情绪分析 人工智能
作者
Leon Tabaro,Jean Marie Vianney Kinani,Alberto Rosales,Julio César Salgado-Ramírez,Dante Mújica‐Vargas,Ponciano Jorge Escamilla-Ambrosio,Eduardo Ramos‐Díaz
出处
期刊:Information [MDPI AG]
卷期号:15 (8): 473-473
标识
DOI:10.3390/info15080473
摘要

In this work, we explore the application of deep reinforcement learning (DRL) to algorithmic trading. While algorithmic trading is focused on using computer algorithms to automate a predefined trading strategy, in this work, we train a Double Deep Q-Network (DDQN) agent to learn its own optimal trading policy, with the goal of maximising returns whilst managing risk. In this study, we extended our approach by augmenting the Markov Decision Process (MDP) states with sentiment analysis of financial statements, through which the agent achieved up to a 70% increase in the cumulative reward over the testing period and an increase in the Calmar ratio from 0.9 to 1.3. The experimental results also showed that the DDQN agent’s trading strategy was able to consistently outperform the benchmark set by the buy-and-hold strategy. Additionally, we further investigated the impact of the length of the window of past market data that the agent considers when deciding on the best trading action to take. The results of this study have validated DRL’s ability to find effective solutions and its importance in studying the behaviour of agents in markets. This work serves to provide future researchers with a foundation to develop more advanced and adaptive DRL-based trading systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
开放的起眸完成签到,获得积分20
刚刚
酷波er应助dedex采纳,获得10
1秒前
周山山完成签到 ,获得积分10
2秒前
zhendezy发布了新的文献求助10
3秒前
3秒前
4秒前
刘厚麟发布了新的文献求助10
5秒前
后会无期发布了新的文献求助10
6秒前
Lucas应助王王碎冰冰采纳,获得10
6秒前
yznfly应助Hi采纳,获得20
6秒前
1123发布了新的文献求助10
7秒前
小橘子会发光完成签到,获得积分10
7秒前
犹豫的云朵完成签到,获得积分10
7秒前
zj发布了新的文献求助10
8秒前
asdfzxcv应助xiao采纳,获得10
9秒前
小马甲应助XXXX采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
球球完成签到,获得积分10
10秒前
今后应助yao chen采纳,获得10
12秒前
13秒前
Ava应助小白兔采纳,获得20
13秒前
zj完成签到,获得积分10
14秒前
smh完成签到,获得积分10
15秒前
百事可乐完成签到,获得积分10
15秒前
浮游应助开放的起眸采纳,获得10
15秒前
miaojuly完成签到,获得积分10
15秒前
16秒前
17秒前
NexusExplorer应助tonyliking采纳,获得10
17秒前
景向发布了新的文献求助30
18秒前
18秒前
18秒前
19秒前
day关闭了day文献求助
19秒前
Ivy完成签到,获得积分10
20秒前
20秒前
bkagyin应助1123采纳,获得10
21秒前
科研通AI6应助zhendezy采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913