Synergistic Interactions Between Co Nanoparticles and Unsaturated Co‐N2 Sites for Efficient Electrocatalysis

电催化剂 材料科学 纳米颗粒 纳米技术 化学工程 物理化学 电化学 电极 化学 工程类
作者
Min Wang,Jialiang Chen,Shilin Zhang,Yuanyuan Sun,Weiling Kong,Lina Geng,Yan Li,Liming Dai,Zhongtao Li,Mingbo Wu
出处
期刊:Advanced Functional Materials [Wiley]
被引量:4
标识
DOI:10.1002/adfm.202410373
摘要

Abstract Transition metal‐nitrogen‐doped carbon (M‐N‐C) single‐atom catalysts exhibit high activity and stability for the oxygen reduction reaction (ORR). Their electronic structure, crucial for ORR intermediates' adsorption/desorption, can be tuned by altering the coordination environment or integrating small metal nanoparticles. However, synthesizing unsaturated M‐N X ( x <4) complexes with well‐dispersed nanoparticles is challenging due to reactivity and aggregation issues. In this study, a novel plasma‐assisted in situ thermal reduction strategy is presented to eliminate unstable surface groups for incorporating highly active Co nanoparticles (NPs) and unsaturated coordinated Co‐N 2 sites. The unsaturated coordination structure of Co‐N 2 regulates the electron cloud density around the Co center, decreasing the energy barrier of the rate‐determining step of 4e − ORR process; while the Co NPs can accelerate the mass transfer during ORR through enhancing O 2 adsorption to promote the desorption of *OH and also facilitate the charge transfer. Thus, the remarkable ORR electrocatalytic activity and durability is achieved simultaneously, leading to excellent performance in an aqueous Zn–air battery. The work opens new directions and possibilities for the design and synthesis of efficient and highly selective electrocatalysts for ORR and other redox reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
FFFFFFF应助yatou5651采纳,获得10
1秒前
1秒前
1秒前
Agernon应助正直冰露采纳,获得10
1秒前
1秒前
茕穹完成签到,获得积分10
1秒前
调研昵称发布了新的文献求助30
2秒前
毁灭世界完成签到 ,获得积分10
2秒前
见雨鱼完成签到,获得积分10
2秒前
2秒前
科研混子发布了新的文献求助10
2秒前
斯文香彤完成签到,获得积分10
2秒前
2秒前
3秒前
JamesPei应助单纯访枫采纳,获得30
3秒前
F冯完成签到,获得积分10
4秒前
4秒前
JJ完成签到,获得积分10
4秒前
二豆子0发布了新的文献求助10
4秒前
潦草发布了新的文献求助10
5秒前
sarah完成签到,获得积分10
5秒前
5秒前
凸迩丝儿完成签到 ,获得积分10
5秒前
科研通AI5应助wu采纳,获得30
5秒前
5秒前
爆米花应助艺玲采纳,获得10
6秒前
6秒前
诸葛雪兰发布了新的文献求助10
6秒前
7秒前
CC完成签到,获得积分10
7秒前
wanci应助gaos采纳,获得10
7秒前
顾矜应助四火采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740