Optimized Machine Learning Model for Predicting Compressive Strength of Alkali-Activated Concrete Through Multi-Faceted Comparative Analysis

随机森林 Boosting(机器学习) 杠杆(统计) 计算机科学 梯度升压 机器学习 抗压强度 可解释性 人工智能 粉煤灰 贝叶斯优化 阿达布思 支持向量机 材料科学 复合材料
作者
Guohua Fang,Lin Zhu,C.Y. Xie,Qingkai Han,Ming-Yang Hong,Xinyu Zhao
出处
期刊:Materials [MDPI AG]
卷期号:17 (20): 5086-5086
标识
DOI:10.3390/ma17205086
摘要

Alkali-activated concrete (AAC), produced from industrial by-products like fly ash and slag, offers a promising alternative to traditional Portland cement concrete by significantly reducing carbon emissions. Yet, the inherent variability in AAC formulations presents a challenge for accurately predicting its compressive strength using conventional approaches. To address this, we leverage machine learning (ML) techniques, which enable more precise strength predictions based on a combination of material properties and cement mix design parameters. In this study, we curated an extensive dataset comprising 1756 unique AAC mixtures to support robust ML-based modeling. Four distinct input variable schemes were devised to identify the optimal predictor set, and a comparative analysis was performed to evaluate their effectiveness. After this, we investigated the performance of several popular ML algorithms, including random forest (RF), adaptive boosting (AdaBoost), gradient boosting regression trees (GBRTs), and extreme gradient boosting (XGBoost). Among these, the XGBoost model consistently outperformed its counterparts. To further enhance the predictive accuracy of the XGBoost model, we applied four state-of-the-art optimization techniques: the Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), beetle antennae search (BAS), and Bayesian optimization (BO). The optimized XGBoost model delivered superior performance, achieving a remarkable coefficient of determination (R2) of 0.99 on the training set and 0.94 across the entire dataset. Finally, we employed SHapely Additive exPlanations (SHAP) to imbue the optimized model with interpretability, enabling deeper insights into the complex relationships governing AAC formulations. Through the lens of ML, we highlight the benefits of the multi-faceted synergistic approach for AAC strength prediction, which combines careful input parameter selection, optimal hyperparameter tuning, and enhanced model interpretability. This integrated strategy improves both the robustness and scalability of the model, offering a clear and reliable prediction of AAC performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助瑶瑶采纳,获得10
刚刚
华仔应助qianhong采纳,获得10
刚刚
夹心就是嘉欣呀完成签到,获得积分10
1秒前
阿梨发布了新的文献求助10
2秒前
2秒前
所所应助liuliu采纳,获得10
2秒前
美雪曹发布了新的文献求助30
2秒前
吾皇完成签到 ,获得积分10
3秒前
丘比特应助ding采纳,获得10
3秒前
3秒前
3秒前
害羞的胡萝卜完成签到,获得积分10
3秒前
4秒前
斯文小蘑菇完成签到,获得积分20
5秒前
浅沫发布了新的文献求助10
5秒前
5秒前
叛逆美少女完成签到 ,获得积分10
5秒前
本大侠发布了新的文献求助10
5秒前
科研通AI5应助lynn采纳,获得10
6秒前
6秒前
李爱国应助kenny采纳,获得10
8秒前
bias发布了新的文献求助10
8秒前
8秒前
TanFT发布了新的文献求助10
8秒前
xy完成签到,获得积分10
8秒前
9秒前
9秒前
希望天下0贩的0应助Melody采纳,获得10
10秒前
飞先生发布了新的文献求助10
10秒前
11秒前
浅沫完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
xy驳回了PENG应助
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
潇潇雨歇应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233