清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and Optimization Control of SOEC with Flexible Adjustment Capabilities

控制(管理) 计算机科学 数学优化 经济 数学 人工智能
作者
Yaqing He,Weiqing Wang,Yingtian Chi,Jiarong Li,Xinyan Zhang,Bowen Liu
标识
DOI:10.21203/rs.3.rs-4939931/v1
摘要

Abstract Due to the random fluctuations in power experienced by high-temperature green electric hydrogen production systems, further deterioration of spatial distribution characteristics such as temperature, voltage/current, and material concentration inside the solid oxide electrolysis cell (SOEC) stack may occur. This has a negative impact on the system's flexibility and the corresponding control capabilities. In this paper, based on the SOEC electrolytic cell model, a comprehensive optimization method using an adaptive incremental Kriging surrogate model is proposed. The reliability of this method is verified by accurately analyzing the dynamic performance of the SOEC and the spatial characteristics of various physical quantities. Additionally, a thermal dynamic analysis is performed on the SOEC, and an adaptive time-varying LPV-MPC optimization control method is established to ensure the temperature stability of the electrolysis cell stack, aiming to maintain a stable, efficient, and sustainable SOEC operation. The simulation analysis of SOEC hydrogen production adopting a variable load operation has demonstrated the advantages of this method over conventional PID control in stabilizing the temperature of the stack. It allows for a rapid adjustment in the electrolysis voltage and current and improves electrolysis efficiency. The results highlighted that the increase in the electrolysis load increases the current density, while the water vapor, electrolysis voltage, and H2 flow rate significantly decrease. Finally, the SOEC electrolytic hydrogen production module is introduced for optimization scheduling of energy consumption in Xinjiang, China. The findings not only confirmed that the SOEC can transition to the current load operating point at each scheduling period but also demonstrated higher effectiveness in stabilizing the stack temperature and improving electrolysis efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fairy完成签到,获得积分10
3秒前
poki完成签到 ,获得积分10
12秒前
山是山三十三完成签到 ,获得积分10
23秒前
45秒前
在水一方完成签到,获得积分0
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
明理从露完成签到 ,获得积分10
1分钟前
冷傲半邪完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
三水完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
pegasus0802完成签到,获得积分10
3分钟前
RED发布了新的文献求助10
3分钟前
3分钟前
小怪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
lx完成签到,获得积分10
3分钟前
GMEd1son完成签到,获得积分10
3分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
橙橙完成签到 ,获得积分10
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
美好灵寒完成签到 ,获得积分10
6分钟前
科研通AI2S应助Jessica采纳,获得10
6分钟前
6分钟前
殷勤的涵梅完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Future完成签到 ,获得积分10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567