85 Automated Walk-Over Weighing System: Methods to Track Daily Body Mass and Growth in Grazing Steers

虚假关系 饲养场 放牧 标准差 数学 平滑的 肉牛 统计 多项式回归 动物科学 牧群 体重 牧场 线性回归 生物 生态学 内分泌学
作者
Ira L Parsons,Brandi B. Karisch,Stephen L. Webb,Mike Proctor,A.E. Stone,Garrett M. Street
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:100 (Supplement_3): 35-36
标识
DOI:10.1093/jas/skac247.069
摘要

Abstract Body weight (BW) is a critical component for monitoring animal weight gain, body condition, nutritional status. Remote animal weighing systems facilitate frequent collection of animal BW, however, datasets often contain spurious data. The objective of this study was to describe the utility of using a remote Walk-over-Weigh system and subsequent methods for data cleaning. Beef steers (n = 10) were tagged with Electronic RFID tags (EID) in an improved pasture (~12.1 hectares) containing Bermuda and Tall Fescue and inter-seeded with Annual Ryegrass and grazed from Feb. – Dec. 2020. Static chute weights (n = 80) were collected monthly, and a WOW system placed by the water to remotely collect BW (n = 5,466). Data were first loaded into Program R and scanned for spurious data using each of 2 primary approaches, 1) the whole herd and individual means ± 1 standard deviation (SD) calculated daily or over the entire trial and 2) each of 3 data smoothing algorithms, which included a quadratic growth model, cubic splines, and polynomial regression. Then, data with spurious observations removed were paired with static chute weights and fitted to a linear model to measure accuracy (mean bias) and precision (R2) of WOW data. Whole herd mean ± 1SD and individual daily mean ± 1SD identified 1,204 and 1,516 spurious data, with mean bias of -12.46 and -15.37 KG and R2 of 0.90 and 0.68, respectively. Smoothing functions identified 1,707, 4,684, and 4,776 spurious points, with a mean bias of 13.61, -19.78, and 12.58 KG, and R2 of 0.94, 0.70, and 0.87 for quadratic growth models, cubic splines, and polynomial regression, respectively. These results indicate the utility of using a simple WOW system to collect data for measuring growth curves and using weight data in a real-time fashion to make management and marketing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺心书琴完成签到,获得积分10
刚刚
习习应助Nifeng采纳,获得10
刚刚
mrmrer发布了新的文献求助10
刚刚
2秒前
MUSTer一一完成签到 ,获得积分10
2秒前
通通通完成签到,获得积分10
2秒前
2秒前
务实的菓完成签到 ,获得积分10
3秒前
似水流年完成签到,获得积分10
3秒前
An慧完成签到,获得积分10
3秒前
Hello应助阿金采纳,获得10
3秒前
3秒前
3秒前
5秒前
顾夏包完成签到,获得积分10
5秒前
小土豆发布了新的文献求助50
6秒前
科研通AI5应助跑在颖采纳,获得10
6秒前
追寻代真发布了新的文献求助10
7秒前
mrmrer完成签到,获得积分20
7秒前
7秒前
7秒前
毛慢慢发布了新的文献求助10
8秒前
8秒前
今天不学习明天变垃圾完成签到,获得积分10
8秒前
9秒前
9秒前
布布完成签到,获得积分10
10秒前
一独白发布了新的文献求助10
10秒前
周周完成签到 ,获得积分10
10秒前
淡然完成签到,获得积分10
11秒前
明理小土豆完成签到,获得积分10
11秒前
刘国建郭菱香完成签到,获得积分10
11秒前
嘤嘤嘤完成签到,获得积分10
11秒前
九川应助粱自中采纳,获得10
11秒前
无辜之卉完成签到,获得积分10
12秒前
无花果应助Island采纳,获得10
12秒前
12秒前
SHDeathlock发布了新的文献求助200
13秒前
Owen应助醒醒采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762