85 Automated Walk-Over Weighing System: Methods to Track Daily Body Mass and Growth in Grazing Steers

虚假关系 饲养场 放牧 标准差 数学 平滑的 肉牛 统计 多项式回归 动物科学 牧群 体重 牧场 线性回归 生物 生态学 内分泌学
作者
Ira L Parsons,Brandi B. Karisch,Stephen L. Webb,Mike Proctor,A.E. Stone,Garrett M. Street
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:100 (Supplement_3): 35-36
标识
DOI:10.1093/jas/skac247.069
摘要

Abstract Body weight (BW) is a critical component for monitoring animal weight gain, body condition, nutritional status. Remote animal weighing systems facilitate frequent collection of animal BW, however, datasets often contain spurious data. The objective of this study was to describe the utility of using a remote Walk-over-Weigh system and subsequent methods for data cleaning. Beef steers (n = 10) were tagged with Electronic RFID tags (EID) in an improved pasture (~12.1 hectares) containing Bermuda and Tall Fescue and inter-seeded with Annual Ryegrass and grazed from Feb. – Dec. 2020. Static chute weights (n = 80) were collected monthly, and a WOW system placed by the water to remotely collect BW (n = 5,466). Data were first loaded into Program R and scanned for spurious data using each of 2 primary approaches, 1) the whole herd and individual means ± 1 standard deviation (SD) calculated daily or over the entire trial and 2) each of 3 data smoothing algorithms, which included a quadratic growth model, cubic splines, and polynomial regression. Then, data with spurious observations removed were paired with static chute weights and fitted to a linear model to measure accuracy (mean bias) and precision (R2) of WOW data. Whole herd mean ± 1SD and individual daily mean ± 1SD identified 1,204 and 1,516 spurious data, with mean bias of -12.46 and -15.37 KG and R2 of 0.90 and 0.68, respectively. Smoothing functions identified 1,707, 4,684, and 4,776 spurious points, with a mean bias of 13.61, -19.78, and 12.58 KG, and R2 of 0.94, 0.70, and 0.87 for quadratic growth models, cubic splines, and polynomial regression, respectively. These results indicate the utility of using a simple WOW system to collect data for measuring growth curves and using weight data in a real-time fashion to make management and marketing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋秋完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
ellie0125完成签到 ,获得积分10
3秒前
啊啊啊啊发布了新的文献求助10
5秒前
禾禾发布了新的文献求助10
5秒前
情怀应助toxin37采纳,获得10
5秒前
99完成签到,获得积分10
5秒前
......完成签到,获得积分10
5秒前
6秒前
6秒前
HCLonely应助科研通管家采纳,获得10
6秒前
sissiarno应助科研通管家采纳,获得50
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
zc0178应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
比目鱼发布了新的文献求助10
7秒前
CodeCraft应助跳跃仙人掌采纳,获得30
7秒前
打打应助跳跃仙人掌采纳,获得10
7秒前
JamesPei应助跳跃仙人掌采纳,获得10
7秒前
Orange应助跳跃仙人掌采纳,获得10
7秒前
Amai发布了新的文献求助10
8秒前
8秒前
慕青应助跳跃仙人掌采纳,获得10
8秒前
小马甲应助跳跃仙人掌采纳,获得10
8秒前
wuwuwu发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助跳跃仙人掌采纳,获得10
8秒前
斯文败类应助跳跃仙人掌采纳,获得10
8秒前
汉堡包应助跳跃仙人掌采纳,获得10
8秒前
xiu-er发布了新的文献求助10
8秒前
布布发布了新的文献求助30
9秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295866
求助须知:如何正确求助?哪些是违规求助? 2931755
关于积分的说明 8453560
捐赠科研通 2604360
什么是DOI,文献DOI怎么找? 1421654
科研通“疑难数据库(出版商)”最低求助积分说明 661074
邀请新用户注册赠送积分活动 644023