Effective Opportunistic Esophageal Cancer Screening Using Noncontrast CT Imaging

食管癌 医学 背景(考古学) 癌症 阶段(地层学) 人口 指南 放射科 内科学 病理 古生物学 环境卫生 生物
作者
Jiawen Yao,Xianghua Ye,Yingda Xia,Jian Zhou,Yu Shi,Ke Yan,Fang Wang,Lili Lin,Haogang Yu,Xian-Sheng Hua,Le Lü,Dakai Jin,Ling Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 344-354 被引量:6
标识
DOI:10.1007/978-3-031-16437-8_33
摘要

Esophageal cancer is the second most deadly cancer. Early detection of resectable/curable esophageal cancers has a great potential to reduce mortality, but no guideline-recommended screening test is available. Although some screening methods have been developed, they are expensive, might be difficult to apply to the general population, and often fail to achieve satisfactory sensitivity for identifying early-stage cancers. In this work, we investigate the feasibility of esophageal tumor detection and classification (cancer or benign) on the noncontrast CT scan, which could potentially be used for opportunistic cancer screening. To capture the global context, a novel position-sensitive self-attention is proposed to augment nnUNet with non-local interactions. Our model achieves a sensitivity of 93.0% and specificity of 97.5% for the detection of esophageal tumors on a holdout testing set with 180 patients. In comparison, the mean sensitivity and specificity of four doctors are 75.0% and 83.8%, respectively. For the classification task, our model outperforms the mean doctors by absolute margins of 17%, 31%, and 14% for cancer, benign tumor, and normal, respectively. Compared with established state-of-the-art esophageal cancer screening methods, e.g., blood testing and endoscopy AI system, our method has comparable performance and is even more sensitive for early-stage cancer and benign tumor. Our proposed method is a novel, non-invasive, low-cost, and highly accurate tool for opportunistic screening of esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding完成签到 ,获得积分20
1秒前
Hayden发布了新的文献求助10
1秒前
1秒前
深情安青应助善良的翼采纳,获得10
2秒前
szy发布了新的文献求助10
3秒前
小二郎应助啾啾采纳,获得10
3秒前
靬七发布了新的文献求助10
3秒前
4秒前
无花果应助楠D采纳,获得10
4秒前
什聆发布了新的文献求助10
4秒前
Dabiel1213完成签到,获得积分10
6秒前
6秒前
自然浩阑完成签到,获得积分20
7秒前
领导范儿应助含蓄的慕凝采纳,获得10
7秒前
10秒前
10秒前
10秒前
10秒前
11秒前
Wang发布了新的文献求助10
11秒前
11秒前
12秒前
szy完成签到,获得积分10
13秒前
啾啾发布了新的文献求助10
13秒前
14秒前
14秒前
积极慕梅应助迷路德地采纳,获得10
15秒前
15秒前
lzc发布了新的文献求助10
15秒前
yzbj发布了新的文献求助10
16秒前
延胡索发布了新的文献求助10
16秒前
不爱吃饭的小鱼完成签到 ,获得积分20
16秒前
16秒前
18秒前
19秒前
xxx完成签到,获得积分10
19秒前
温医第一打野完成签到,获得积分10
20秒前
SciGPT应助高贵的斑马采纳,获得10
20秒前
爆米花应助Vale采纳,获得10
20秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226