Attention-LSTM based prediction model for aircraft 4-D trajectory

弹道 计算机科学 支持向量机 人工神经网络 隐马尔可夫模型 人工智能 卷积神经网络 循环神经网络 过程(计算) 民用航空 空中交通管理 短时记忆 空中交通管制 航空 机器学习 序列(生物学) 工程类 物理 天文 生物 遗传学 航空航天工程 操作系统
作者
Peiyan Jia,Huiping Chen,Lei Zhang,Daojun Han
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:26
标识
DOI:10.1038/s41598-022-19794-1
摘要

Abstract Aviation activities are constantly increasing as a result of the growth of the global economic system. How to increase airspace capacity within the limited airspace resources while ensuring smooth and safe aircraft operations is a challenge for civil aviation today. Air traffic safety is supported by accurate trajectory prediction. The way-points are relatively sparse, and there are many uncertain factors in the flight, which greatly increases the difficulty of trajectory prediction. So, it is vital to enhance trajectory prediction accuracy. An attention-LSTM trajectory prediction model is proposed in this paper, which is split into two parts. The time-series features of the flight trajectory are extracted in the initial stage using the long-short-term memory neural network (LSTM). In the second part, the attention mechanism is employed to process the extracted sequence features. The impact of secondary elements is reduced while the influence of primary ones is increased according to the attention mechanism. We used the advanced models in trajectory prediction as the comparison models, such as LSTM, support vector machine (SVM), back propagation (BP) neural network, Hidden Markov Model (HMM), and convolutional long-term memory neural network (CNN-LSTM). The model we proposed is superior to the model above based on quantitative analysis and comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋半梦发布了新的文献求助10
3秒前
456完成签到,获得积分20
4秒前
斯文败类应助碧蓝丹烟采纳,获得10
6秒前
6秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
凉薄少年应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
凉薄少年应助科研通管家采纳,获得10
12秒前
彭于晏应助三重积分咖啡采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
916应助科研通管家采纳,获得30
12秒前
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
lj完成签到,获得积分10
13秒前
13秒前
ggappsong发布了新的文献求助10
13秒前
Lz0330发布了新的文献求助20
15秒前
huofuman发布了新的文献求助10
17秒前
17秒前
jasonlee发布了新的文献求助20
18秒前
量子星尘发布了新的文献求助100
18秒前
小橙子完成签到,获得积分10
18秒前
20秒前
ZEZE发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143