Modeling and optimization of composting technology

堆肥 处置模式 废物管理 废弃物 机械生物处理 原材料 肥料 环境科学 工程类 废物处理 废物收集 化学 生态学 生物 有机化学
作者
Zhaoyu Wang,Jianwen Xie,Han Ye,Hang Zhao,Mengxiang Zhao,Quan Wang
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 97-126
标识
DOI:10.1016/b978-0-323-91874-9.00005-x
摘要

How to efficiently dispose of and utilize organic waste such as sewage sludge, green waste, food waste and livestock manure is a crucial issue to develop a healthy ecosystem. Composting technology has been used to treat organic waste and produce a high-valued byproduct. However, the inevitable harmful gases emissions, low efficiency of organic matter transformation, low quality of compost and high mobility of heavy metals have restricted the popularization and application of composting technology. During the last decades, many practical methods have been put forward to improve the composting and decrease the adverse effects. While, the performance of composting is closely related to the raw materials, composting scale, reactor and technological parameters, resulting in the results obtained from the pilot- and laboratory-scale composting cannot be reproduced in full scale composting. Although full-scale composting is closer to reality, it is difficult to control and use more resources. Composting modeling offers the potential to reduce or even replace the need for physical experiment and is also beneficial for reducing resource and time waste. Various kinds of composting models (e.g., physical model, mathematical model, and neural network) were built up to predict composting performance, understand the composting process, discover new theoretical concepts, and solve the composting practical problems. However, with the development of society and economy, there are new problems that occurred during the composting and new models need to be proposed to solve these problems. Understanding the basic concept and principle of composting models is important to modeling and optimization of composting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baby完成签到,获得积分10
刚刚
花样年华完成签到,获得积分0
1秒前
haru完成签到,获得积分10
2秒前
3秒前
3秒前
图苏完成签到,获得积分10
3秒前
jingfuhao发布了新的文献求助10
3秒前
我的白起是国服完成签到 ,获得积分10
4秒前
何hyy发布了新的文献求助10
4秒前
4秒前
wby0313发布了新的文献求助10
4秒前
动人的怀柔完成签到,获得积分10
4秒前
5秒前
5秒前
liuxh123发布了新的文献求助10
8秒前
min发布了新的文献求助10
9秒前
赵若君发布了新的文献求助100
10秒前
11秒前
8R60d8应助大力的香露采纳,获得10
12秒前
13秒前
trans完成签到,获得积分10
13秒前
noklco完成签到 ,获得积分10
13秒前
haru发布了新的文献求助10
14秒前
宁霸完成签到,获得积分0
14秒前
haha完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
明亮大叔完成签到,获得积分10
16秒前
CipherSage应助李佳轩采纳,获得10
17秒前
zlqq完成签到 ,获得积分10
17秒前
djdh完成签到 ,获得积分10
17秒前
老高完成签到,获得积分10
18秒前
18秒前
云魂完成签到,获得积分10
19秒前
大意的觅云完成签到,获得积分10
19秒前
王哒哒发布了新的文献求助10
20秒前
22发布了新的文献求助20
21秒前
liuxh123完成签到,获得积分10
23秒前
猪蹄完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286