Modeling and optimization of composting technology

堆肥 处置模式 废物管理 废弃物 机械生物处理 原材料 肥料 环境科学 工程类 废物处理 废物收集 化学 生态学 生物 有机化学
作者
Zhaoyu Wang,Jianwen Xie,Han Ye,Hang Zhao,Mengxiang Zhao,Quan Wang
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 97-126
标识
DOI:10.1016/b978-0-323-91874-9.00005-x
摘要

How to efficiently dispose of and utilize organic waste such as sewage sludge, green waste, food waste and livestock manure is a crucial issue to develop a healthy ecosystem. Composting technology has been used to treat organic waste and produce a high-valued byproduct. However, the inevitable harmful gases emissions, low efficiency of organic matter transformation, low quality of compost and high mobility of heavy metals have restricted the popularization and application of composting technology. During the last decades, many practical methods have been put forward to improve the composting and decrease the adverse effects. While, the performance of composting is closely related to the raw materials, composting scale, reactor and technological parameters, resulting in the results obtained from the pilot- and laboratory-scale composting cannot be reproduced in full scale composting. Although full-scale composting is closer to reality, it is difficult to control and use more resources. Composting modeling offers the potential to reduce or even replace the need for physical experiment and is also beneficial for reducing resource and time waste. Various kinds of composting models (e.g., physical model, mathematical model, and neural network) were built up to predict composting performance, understand the composting process, discover new theoretical concepts, and solve the composting practical problems. However, with the development of society and economy, there are new problems that occurred during the composting and new models need to be proposed to solve these problems. Understanding the basic concept and principle of composting models is important to modeling and optimization of composting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助复杂的雪巧采纳,获得10
刚刚
刚刚
无名老大应助不问悲欢采纳,获得30
刚刚
一棵好困芽完成签到 ,获得积分20
1秒前
怒发5篇sci完成签到,获得积分10
1秒前
明理碧完成签到,获得积分10
2秒前
岳苏佳完成签到,获得积分10
2秒前
3秒前
老迟到的从露完成签到,获得积分10
4秒前
4秒前
Amy发布了新的文献求助30
4秒前
4秒前
4秒前
爱学习的小学生完成签到,获得积分10
7秒前
Rab_b1t发布了新的文献求助10
7秒前
怒发5篇sci发布了新的文献求助10
7秒前
bkagyin应助大音响贴贴采纳,获得10
8秒前
杨诚发布了新的文献求助10
9秒前
虚幻的山水完成签到,获得积分20
9秒前
tianx发布了新的文献求助10
10秒前
11秒前
Rab_b1t完成签到,获得积分10
12秒前
科研通AI5应助飞翔的企鹅采纳,获得10
13秒前
AAA完成签到,获得积分10
14秒前
14秒前
我爱读文献完成签到,获得积分10
15秒前
思源应助ff采纳,获得10
16秒前
Tyj发布了新的文献求助30
17秒前
大个应助123456采纳,获得10
18秒前
xiao5424liu完成签到 ,获得积分20
20秒前
20秒前
21秒前
21秒前
打打应助积极松鼠采纳,获得10
25秒前
我是老大应助茶色玻璃采纳,获得10
26秒前
羞涩的zeze发布了新的文献求助10
27秒前
NexusExplorer应助曾医生采纳,获得10
27秒前
饼饼完成签到,获得积分20
27秒前
zhongying完成签到 ,获得积分10
28秒前
内向代珊发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031