Cascade ADRC with neural network-based ESO for hypersonic vehicle

控制理论(社会学) 自抗扰控制 级联 国家观察员 抖动 人工神经网络 非线性系统 计算机科学 PID控制器 控制工程 工程类 人工智能 控制(管理) 温度控制 物理 化学工程 电信 量子力学
作者
Lei Liu,Yongxiong Liu,Lilin Zhou,Bo Wang,Zhongtao Cheng,Huijin Fan
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:360 (12): 9115-9138 被引量:13
标识
DOI:10.1016/j.jfranklin.2022.09.019
摘要

In this paper, active disturbance rejection control (ADRC) based on a neural network has been investigated for the attitude control of the hypersonic vehicle (HV) with uncertain disturbances, which are regarded as a strongly time-varying, nonlinear, and coupled system. The structure of nonlinear state error feedback (NLSEF) with an Extended State Observer (NLSEF+ESO) utilized in ADRC is considered to have good disturbance resistance ability in engineering applications with less dependence on the mathematical model of the system. However, the strong coupling of the HV makes it complicated to separately design ADRC for each channel. In addition, the bandwidth and parameters of the ESO can seriously affect the performance of the ADRC, while jitter occurs when they are not well matched. A cascade active-rejection control scheme is designed by introducing the Radial Basis Function (RBF) Neural Network to substitute the ESO in ADRC, which mitigates the shortcoming of ADRC in addressing the control problems of the MIMO system with coupling disturbances. The NNESO can adapt well to disturbance characteristics through online training and fitting and can effectively reduce the jitter of the control. The stability of the NNESO is proved by Lyapunov stability theory, and the numerical simulations are presented to demonstrate the effectiveness of our theoretical results. In summary, the proposed NNESO-based cascade ADRC is an effective method for solving the problem of HV control with better disturbance resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈老板发布了新的文献求助10
刚刚
醒醒发布了新的文献求助10
刚刚
深情安青应助林夕采纳,获得10
1秒前
bkagyin应助部川苦茶采纳,获得10
1秒前
wanci应助文静的千秋采纳,获得10
4秒前
研友_LpAbjn完成签到,获得积分10
4秒前
6秒前
8秒前
8秒前
爱学习的11完成签到,获得积分10
10秒前
林夕发布了新的文献求助10
11秒前
12秒前
12秒前
buzhidao完成签到,获得积分10
13秒前
不配.应助研友_Z7XY28采纳,获得20
14秒前
Niuma完成签到,获得积分10
15秒前
小陈老板完成签到,获得积分10
15秒前
16秒前
ZJK完成签到,获得积分20
17秒前
18秒前
18秒前
Sean0382发布了新的文献求助10
18秒前
19秒前
20秒前
dai完成签到,获得积分10
20秒前
逃跑的想表白的你猜完成签到,获得积分20
20秒前
guoling完成签到,获得积分10
22秒前
ZJK发布了新的文献求助10
22秒前
23秒前
24秒前
LL发布了新的文献求助10
24秒前
24秒前
年少欣欣欣完成签到,获得积分10
24秒前
sitera完成签到 ,获得积分20
25秒前
dai发布了新的文献求助10
26秒前
江风海韵完成签到,获得积分10
26秒前
26秒前
27秒前
Guofenglei发布了新的文献求助10
28秒前
mustardseeds发布了新的文献求助10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260