Multi-task generative adversarial network for retinal optical coherence tomography image denoising

光学相干层析成像 计算机科学 散斑噪声 人工智能 降噪 计算机视觉 分割 噪音(视频) 任务(项目管理) 模式识别(心理学) 斑点图案 图像(数学) 医学 眼科 经济 管理
作者
Qiaoxue Xie,Zongqing Ma,Lianqing Zhu,Fan Fan,Xiaochen Meng,Xinxiao Gao,Jiang Zhu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (4): 045002-045002 被引量:9
标识
DOI:10.1088/1361-6560/ac944a
摘要

Objective. Optical coherence tomography (OCT) has become an essential imaging modality for the assessment of ophthalmic diseases. However, speckle noise in OCT images obscures subtle but important morphological details and hampers its clinical applications. In this work, a novel multi-task generative adversarial network (MGAN) is proposed for retinal OCT image denoising.Approach. To strengthen the preservation of retinal structural information in the OCT denoising procedure, the proposed MGAN integrates adversarial learning and multi-task learning. Specifically, the generator of MGAN simultaneously undertakes two tasks, including the denoising task and the segmentation task. The segmentation task aims at the generation of the retinal segmentation map, which can guide the denoising task to focus on the retina-related region based on the retina-attention module. In doing so, the denoising task can enhance the attention to the retinal region and subsequently protect the structural detail based on the supervision of the structural similarity index measure loss.Main results. The proposed MGAN was evaluated and analyzed on three public OCT datasets. The qualitative and quantitative comparisons show that the MGAN method can achieve higher image quality, and is more effective in both speckle noise reduction and structural information preservation than previous denoising methods.Significance. We have presented a MGAN for retinal OCT image denoising. The proposed method provides an effective way to strengthen the preservation of structural information while suppressing speckle noise, and can promote the OCT applications in the clinical observation and diagnosis of retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztr完成签到,获得积分10
1秒前
科研通AI6应助hrbykdxly采纳,获得10
1秒前
1秒前
晴空万里完成签到,获得积分10
2秒前
2秒前
心想事成发布了新的文献求助10
2秒前
2秒前
3秒前
ly发布了新的文献求助10
3秒前
沉静小蚂蚁完成签到,获得积分10
3秒前
returno_0发布了新的文献求助10
3秒前
4秒前
sherlock发布了新的文献求助10
4秒前
5秒前
打工小房应助daoyi采纳,获得30
5秒前
5秒前
上官若男应助灵巧的易梦采纳,获得10
5秒前
linpeng发布了新的文献求助10
6秒前
6秒前
6秒前
Hello应助勤奋雅容采纳,获得10
8秒前
充电宝应助火星上乐驹采纳,获得10
8秒前
8秒前
风城玫瑰发布了新的文献求助30
8秒前
典雅的俊驰应助momowang采纳,获得10
9秒前
阿言完成签到,获得积分10
9秒前
10秒前
10秒前
rarfen完成签到,获得积分10
10秒前
悦耳笑南发布了新的文献求助10
10秒前
善学以致用应助cc采纳,获得30
10秒前
彭于晏应助标致天思采纳,获得10
11秒前
我爱吃肉发布了新的文献求助10
11秒前
11秒前
SciGPT应助漂亮乐蓉采纳,获得10
11秒前
11秒前
anan发布了新的文献求助50
11秒前
11秒前
阿鹿发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940739
求助须知:如何正确求助?哪些是违规求助? 4206869
关于积分的说明 13075712
捐赠科研通 3985443
什么是DOI,文献DOI怎么找? 2182202
邀请新用户注册赠送积分活动 1197798
关于科研通互助平台的介绍 1110099