Prediction model of rice eating quality using physicochemical properties and sensory quality evaluation

质量(理念) 数学 预测建模 农业工程 食品质量 食品科学 统计 环境科学 化学 工程类 物理 量子力学
作者
Hoon Kim,Oui‐Woung Kim,Han Sub Kwak,Sang Sook Kim,H. Lee
出处
期刊:Journal of Sensory Studies [Wiley]
卷期号:32 (4) 被引量:24
标识
DOI:10.1111/joss.12273
摘要

Abstract The objective of this study was to develop a prediction model for rice eating quality, which is one of the main factors considered by customers at the time of milled rice (MR) purchase. The overall sensory quality (OSQ) of 533 samples of MR on the market was analyzed by a trained panel from the Korea Food Research Institute (KFRI). Among the quality characteristics of MR, the moisture content ( r = .375) and damaged kernels (DA) ( r = .446) showed a correlation with the OSQ. In the case of cooked rice (CR), the a ‐value (.438) and hardness (HA; .443) presented correlations with the OSQ. Each quality factor for MR and CR was not appropriate for estimating OSQ by itself. Three eating quality prediction models were developed using the MR and CR quality factors for 400 rice samples. The prediction model from a combination of MR and CR quality parameters had higher coefficients of determination ( R 2 = .657) than the models developed from MR ( R 2 = .358) or CR ( R 2 = .555). The model validations with 133 rice samples showed similar coefficients of determination for these prediction models. Practical applications Developed models is an appropriate to be a basic method for install sensory evaluation machinery for rice. The results will cover various rice cultivars and freshness because models were derived from properties of milled rice and cooked rice together. This study will be more useful with study of rough rice freshness according to storage conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDTT完成签到,获得积分10
1秒前
霸气的念云完成签到,获得积分10
1秒前
Orange应助欢呼小蚂蚁采纳,获得10
1秒前
1秒前
SQ完成签到,获得积分10
2秒前
2秒前
飞跃海龙完成签到 ,获得积分10
2秒前
ufuon发布了新的文献求助10
3秒前
momo完成签到,获得积分10
4秒前
赘婿应助二二二采纳,获得10
4秒前
JamesPei应助HongJiang采纳,获得10
4秒前
clarkq完成签到,获得积分10
5秒前
orixero应助LIU采纳,获得10
5秒前
经法发布了新的文献求助10
5秒前
不吃橘子完成签到,获得积分10
5秒前
Cheryy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
ding应助哈哈哈哈采纳,获得10
7秒前
Draeck发布了新的文献求助10
7秒前
kingwhitewing发布了新的文献求助10
7秒前
8秒前
clarkq发布了新的文献求助10
8秒前
8秒前
GGZ完成签到,获得积分10
8秒前
15860936613完成签到 ,获得积分10
8秒前
可爱的函函应助a方舟采纳,获得10
8秒前
9秒前
ee关闭了ee文献求助
9秒前
9秒前
10秒前
Hungrylunch给woshiwuziq的求助进行了留言
10秒前
传奇3应助cruise采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
10秒前
我是老大应助sun采纳,获得10
11秒前
柔弱煎饼完成签到,获得积分10
11秒前
SY发布了新的文献求助10
11秒前
暗能量完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678