记忆电阻器
横杆开关
乘法(音乐)
图像(数学)
计算机科学
电压
矩阵乘法
神经形态工程学
CMOS芯片
信号处理
模拟信号
模拟信号处理
基质(化学分析)
图像处理
图像压缩
电子工程
电气工程
信号(编程语言)
材料科学
人工智能
计算机硬件
工程类
人工神经网络
物理
声学
数字信号处理
电信
程序设计语言
量子
复合材料
量子力学
作者
Can Li,Miao Hu,Yunning Li,Hao Jiang,Ning Ge,Eric Montgomery,Jiaming Zhang,Wenhao Song,Noraica Dávila,Catherine E. Graves,Zhiyong Li,John Paul Strachan,Peng Lin,Zhongrui Wang,Mark Barnell,Qing Wu,R. Stanley Williams,J. Joshua Yang,Qiangfei Xia
标识
DOI:10.1038/s41928-017-0002-z
摘要
Memristor crossbars offer reconfigurable non-volatile resistance states and could remove the speed and energy efficiency bottleneck in vector-matrix multiplication, a core computing task in signal and image processing. Using such systems to multiply an analogue-voltage-amplitude-vector by an analogue-conductance-matrix at a reasonably large scale has, however, proved challenging due to difficulties in device engineering and array integration. Here we show that reconfigurable memristor crossbars composed of hafnium oxide memristors on top of metal-oxide-semiconductor transistors are capable of analogue vector-matrix multiplication with array sizes of up to 128 × 64 cells. Our output precision (5–8 bits, depending on the array size) is the result of high device yield (99.8%) and the multilevel, stable states of the memristors, while the linear device current–voltage characteristics and low wire resistance between cells leads to high accuracy. With the large memristor crossbars, we demonstrate signal processing, image compression and convolutional filtering, which are expected to be important applications in the development of the Internet of Things (IoT) and edge computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI