Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado

外推法 校准 环境科学 软件部署 领域(数学) 采样(信号处理) 人工神经网络 线性回归 样品(材料) 灵敏度(控制系统) 计算机科学 统计 气象学 遥感 地理 机器学习 数学 工程类 电子工程 纯数学 操作系统 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Joanna Gordon Casey,Michael Hannigan
出处
期刊:Atmospheric Measurement Techniques 卷期号:11 (11): 6351-6378 被引量:25
标识
DOI:10.5194/amt-11-6351-2018
摘要

Abstract. We assessed the performance of ambient ozone (O3) and carbon dioxide (CO2) sensor field calibration techniques when they were generated using data from one location and then applied to data collected at a new location. This was motivated by a previous study (Casey et al., 2018), which highlighted the importance of determining the extent to which field calibration regression models could be aided by relationships among atmospheric trace gases at a given training location, which may not hold if a model is applied to data collected in a new location. We also explored the sensitivity of these methods in response to the timing of field calibrations relative to deployment periods. Employing data from a number of field deployments in Colorado and New Mexico that spanned several years, we tested and compared the performance of field-calibrated sensors using both linear models (LMs) and artificial neural networks (ANNs) for regression. Sampling sites covered urban and rural–peri-urban areas and environments influenced by oil and gas production. We found that the best-performing model inputs and model type depended on circumstances associated with individual case studies, such as differing characteristics of local dominant emissions sources, relative timing of model training and application, and the extent of extrapolation outside of parameter space encompassed by model training. In agreement with findings from our previous study that was focused on data from a single location (Casey et al., 2018), ANNs remained more effective than LMs for a number of these case studies but there were some exceptions. For CO2 models, exceptions included case studies in which training data collection took place more than several months subsequent to the test data period. For O3 models, exceptions included case studies in which the characteristics of dominant local emissions sources (oil and gas vs. urban) were significantly different at model training and testing locations. Among models that were tailored to case studies on an individual basis, O3 ANNs performed better than O3 LMs in six out of seven case studies, while CO2 ANNs performed better than CO2 LMs in three out of five case studies. The performance of O3 models tended to be more sensitive to deployment location than to extrapolation in time, while the performance of CO2 models tended to be more sensitive to extrapolation in time than to deployment location. The performance of O3 ANN models benefited from the inclusion of several secondary metal-oxide-type sensors as inputs in five of seven case studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
99668发布了新的文献求助10
刚刚
h31318927完成签到,获得积分10
刚刚
年轻乘云完成签到,获得积分10
刚刚
王语嫣发布了新的文献求助10
1秒前
2秒前
Akim应助快乐芷珊采纳,获得10
2秒前
糖炒栗子完成签到,获得积分10
2秒前
Shilly完成签到,获得积分10
3秒前
3秒前
4秒前
执着梦山完成签到,获得积分10
5秒前
skylee9527发布了新的文献求助10
5秒前
Hilary完成签到,获得积分20
5秒前
FashionBoy应助dalin采纳,获得10
6秒前
6秒前
邱型程完成签到 ,获得积分20
7秒前
hswsdy完成签到,获得积分10
8秒前
8秒前
繁荣的向梦完成签到 ,获得积分10
8秒前
徐亦驰发布了新的文献求助10
8秒前
爆米花应助日落星野采纳,获得10
8秒前
共享精神应助无奈的萝采纳,获得10
9秒前
尊敬时光发布了新的文献求助10
10秒前
10秒前
劲秉应助木易羊采纳,获得30
10秒前
10秒前
10秒前
陈住气关注了科研通微信公众号
11秒前
11秒前
lili完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI2S应助cover12采纳,获得10
12秒前
13秒前
梵星星发布了新的文献求助10
14秒前
黑木完成签到 ,获得积分10
14秒前
cfzy发布了新的文献求助10
14秒前
乐正一兰完成签到,获得积分10
15秒前
loon发布了新的文献求助10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257808
求助须知:如何正确求助?哪些是违规求助? 2899627
关于积分的说明 8306997
捐赠科研通 2568927
什么是DOI,文献DOI怎么找? 1395373
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630868