Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado

外推法 校准 环境科学 软件部署 领域(数学) 采样(信号处理) 人工神经网络 线性回归 样品(材料) 灵敏度(控制系统) 计算机科学 统计 气象学 遥感 地理 机器学习 数学 工程类 电子工程 纯数学 操作系统 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Joanna Gordon Casey,Michael Hannigan
出处
期刊:Atmospheric Measurement Techniques [Copernicus Publications]
卷期号:11 (11): 6351-6378 被引量:25
标识
DOI:10.5194/amt-11-6351-2018
摘要

Abstract. We assessed the performance of ambient ozone (O3) and carbon dioxide (CO2) sensor field calibration techniques when they were generated using data from one location and then applied to data collected at a new location. This was motivated by a previous study (Casey et al., 2018), which highlighted the importance of determining the extent to which field calibration regression models could be aided by relationships among atmospheric trace gases at a given training location, which may not hold if a model is applied to data collected in a new location. We also explored the sensitivity of these methods in response to the timing of field calibrations relative to deployment periods. Employing data from a number of field deployments in Colorado and New Mexico that spanned several years, we tested and compared the performance of field-calibrated sensors using both linear models (LMs) and artificial neural networks (ANNs) for regression. Sampling sites covered urban and rural–peri-urban areas and environments influenced by oil and gas production. We found that the best-performing model inputs and model type depended on circumstances associated with individual case studies, such as differing characteristics of local dominant emissions sources, relative timing of model training and application, and the extent of extrapolation outside of parameter space encompassed by model training. In agreement with findings from our previous study that was focused on data from a single location (Casey et al., 2018), ANNs remained more effective than LMs for a number of these case studies but there were some exceptions. For CO2 models, exceptions included case studies in which training data collection took place more than several months subsequent to the test data period. For O3 models, exceptions included case studies in which the characteristics of dominant local emissions sources (oil and gas vs. urban) were significantly different at model training and testing locations. Among models that were tailored to case studies on an individual basis, O3 ANNs performed better than O3 LMs in six out of seven case studies, while CO2 ANNs performed better than CO2 LMs in three out of five case studies. The performance of O3 models tended to be more sensitive to deployment location than to extrapolation in time, while the performance of CO2 models tended to be more sensitive to extrapolation in time than to deployment location. The performance of O3 ANN models benefited from the inclusion of several secondary metal-oxide-type sensors as inputs in five of seven case studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研完成签到,获得积分20
刚刚
刚刚
菲菲儿发布了新的文献求助20
刚刚
1秒前
不倦应助wuran采纳,获得10
1秒前
在水一方应助丽丽采纳,获得10
1秒前
1秒前
元谷雪发布了新的文献求助10
1秒前
Mayday完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助HJJHJH采纳,获得10
2秒前
王宇航发布了新的文献求助10
3秒前
勤劳白翠发布了新的文献求助10
3秒前
hh完成签到,获得积分10
3秒前
陈cxz发布了新的文献求助10
3秒前
3秒前
vv完成签到,获得积分10
4秒前
和风晓月完成签到,获得积分10
4秒前
林冲发布了新的文献求助10
4秒前
Gaoge完成签到,获得积分10
5秒前
ks_Mo发布了新的文献求助10
5秒前
哈哈哈啊完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
甜蜜凡波完成签到,获得积分10
6秒前
舒服的灰狼完成签到,获得积分10
6秒前
王金金发布了新的文献求助10
7秒前
月月发布了新的文献求助10
7秒前
7秒前
ABCDE完成签到,获得积分10
7秒前
曲意风华完成签到,获得积分10
7秒前
8秒前
8秒前
卢健辉完成签到,获得积分10
8秒前
GH发布了新的文献求助10
8秒前
xwwdcg完成签到,获得积分10
9秒前
9秒前
wang发布了新的文献求助10
10秒前
Guochunbao发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284