Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images Using Variational Autoencoder

人工智能 分割 自编码 计算机科学 模式识别(心理学) 特征(语言学) 嵌入 尺度空间分割 计算机视觉 视杯(胚胎学) 图像分割 视盘 深度学习 青光眼 医学 生物化学 眼科 眼睛发育 基因 表型 哲学 语言学 化学
作者
Suman Sedai,Dwarikanath Mahapatra,Sajini Hewavitharanage,Stefan Maetschke,Rahil Garnavi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 75-82 被引量:37
标识
DOI:10.1007/978-3-319-66185-8_9
摘要

Accurate segmentation of optic cup and disc in retinal fundus images is essential to compute the cup to disc ratio parameter, which is important for glaucoma assessment. The ill-defined boundaries of optic cup makes the segmentation a lot more challenging compared to optic disc. Existing approaches have mainly used fully supervised learning that requires many labeled samples to build a robust segmentation framework. In this paper, we propose a novel semi-supervised method to segment the optic cup, which can accurately localize the anatomy using limited number of labeled samples. The proposed method leverages the inherent feature similarity from a large number of unlabeled images to train the segmentation model from a smaller number of labeled images. It first learns the parameters of a generative model from unlabeled images using variational autoencoder. The trained generative model provides the feature embedding of the images which allows the clustering of the related observation in the latent feature space. We combine the feature embedding with the segmentation autoencoder which is trained on the labeled images for pixel-wise segmentation of the cup region. The main novelty of the proposed approach is in the utilization of generative models for semi-supervised segmentation. Experimental results show that the proposed method successfully segments optic cup with small number of labeled images, and unsupervised feature embedding learned from unlabeled data improves the segmentation accuracy. Given the challenge of access to annotated medical images in every clinical application, the proposed framework is a key contribution and applicable for segmentation of different anatomies across various medical imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
完美世界应助就发酵罐采纳,获得10
2秒前
3秒前
focus完成签到 ,获得积分10
3秒前
zhy完成签到 ,获得积分10
4秒前
mengtian发布了新的文献求助10
4秒前
橘子完成签到,获得积分10
5秒前
终成发布了新的文献求助10
5秒前
Fa完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
Lu完成签到,获得积分10
11秒前
香蕉觅云应助小蚂蚁采纳,获得10
12秒前
TT完成签到 ,获得积分10
14秒前
DcQiu科研小白完成签到,获得积分10
14秒前
含蓄的易文完成签到,获得积分10
14秒前
小白加油发布了新的文献求助10
16秒前
Lu发布了新的文献求助10
17秒前
小二郎应助啦啦啦采纳,获得10
17秒前
17秒前
17秒前
阳光沛柔发布了新的文献求助10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
乌萨奇应助科研通管家采纳,获得10
18秒前
乌萨奇应助科研通管家采纳,获得40
18秒前
无极微光应助科研通管家采纳,获得20
18秒前
中国大陆应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
老阎应助科研通管家采纳,获得30
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539424
关于积分的说明 14167973
捐赠科研通 4456912
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740