材料科学
阳极
灵活性(工程)
可穿戴计算机
阴极
纤维
储能
电解质
可穿戴技术
电池(电)
锂(药物)
磷酸铁锂
电极
制作
静电纺丝
电化学
聚合物
纳米技术
电气工程
复合材料
计算机科学
嵌入式系统
工程类
病理
医学
统计
化学
内分泌学
物理化学
数学
替代医学
量子力学
物理
功率(物理)
作者
Yibo Wang,Chaoji Chen,Hua Xie,Tingting Gao,Yonggang Yao,Glenn Pastel,Xiaogang Han,Yiju Li,Jiupeng Zhao,Kun Fu,Liangbing Hu
标识
DOI:10.1002/adfm.201703140
摘要
Abstract Conventional bulky and rigid power systems are incapable of meeting flexibility and breathability requirements for wearable applications. Despite the tremendous efforts dedicated to developing various 1D energy storage devices with sufficient flexibility, challenges remain pertaining to fabrication scalability, cost, and efficiency. Here, a scalable, low‐cost, and high‐efficiency 3D printing technology is applied to fabricate a flexible all‐fiber lithium‐ion battery (LIB). Highly viscous polymer inks containing carbon nanotubes and either lithium iron phosphate (LFP) or lithium titanium oxide (LTO) are used to print LFP fiber cathodes and LTO fiber anodes, respectively. Both fiber electrodes demonstrate good flexibility and high electrochemical performance in half‐cell configurations. All‐fiber LIB can be successfully assembled by twisting the as‐printed LFP and LTO fibers together with gel polymer as the quasi‐solid electrolyte. The all‐fiber device exhibits a high specific capacity of ≈110 mAh g −1 at a current density of 50 mA g −1 and maintains a good flexibility of the fiber electrodes, which can be potentially integrated into textile fabrics for future wearable electronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI